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Quantum Algorithms

Tutorial

Ronald de Wolf
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Post-quantum cryptography

I Quantum computers can break public-key cryptography that
is based on assuming hardness of factoring, discrete logs, and
a few other problems

I Post-quantum cryptography tries to design classical crypto
schemes that cannot be broken e�ciently by quantum
algorithms

I Classical codemakers vs quantum codebreakers

I This tutorial:

Get to know your enemy!
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Quantum bits

I Richard Feynman,
David Deutsch
in early 1980s:

Harness quantum e↵ects for useful computations!

I Classical bit is 0 or 1; quantum bit is superposition of 0 and 1

For example, can use an electron as qubit,
with 0 = “spin up” and 1 = “spin down”

I 2 qubits is superposition of 4 basis states (00,01,10,11)
3 qubits is superposition of 8 basis states (000,001, . . . )
. . .
1000 qubits: superposition of 21000 states

I Massive space for computation! Easier said than done. . .
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A bit of math: states

I 1-qubit basis states: |0i =
✓

1
0

◆
and |1i =

✓
0
1

◆

I Qubit: superposition ↵
0

|0i+ ↵
1

|1i =
✓
↵
0

↵
1

◆
2 C2

I

2-qubit basis state: |10i = |1i ⌦ |0i =
✓

0
1

◆
⌦
✓

1
0

◆
=

0

BB@

0
0
1
0

1

CCA

I n-qubit state: | i =
X

x2{0,1}n
↵x |xi 2 C2

n

I Axiom: measuring state | i gives |xi with probability |↵x |2

I Hence
X

x2{0,1}n
|↵x |2 = 1, so | i is a vector of length 1
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A bit of math: operations

I Quantum operation maps quantum states to quantum states
and is linear =) corresponds to unitary matrix

I Example 1-qubit gates:

X =

✓
0 1
1 0

◆
, Z =

✓
1 0
0 �1

◆
, T =

✓
1 0
0 e⇡i/4

◆

I More quantum: Hadamard gate =
1p
2

✓
1 1
1 �1

◆

H|0i = 1p
2

(|0i+ |1i), H|1i = 1p
2

(|0i � |1i)

But H 1p
2

(|0i+ |1i) = 1p
2

H|0i+ 1p
2

H|1i = |0i

Interference!

I Controlled-NOT gate on 2 qubits: |a, bi 7! |a, a� bi
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Quantum circuits

I A classical Boolean circuit consists of
AND, OR, and NOT gates on an n-bit register

I A quantum circuit consists of
unitary quantum gates on an n-qubit register
(allowing H, T , and CNOT gates su�ces)

Example:

input
qubits

|0i

|0i -

-
C

H -

-

-
final
state

|00i H⌦I�! 1p
2

(|00i+ |10i) CNOT�! 1p
2

(|00i+ |11i)

This circuit creates an EPR-pair: entanglement!
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Recap: From classical to quantum computation

I bits �! qubits

I AND/OR/NOT gates �! unitary quantum gates

I classical circuit �! quantum circuit

I reading the output bit �! measuring final state
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Quantum mechanical computers

1. Start with all qubits in easily-preparable state (e.g. all |0i)

2. Run a circuit that produces the right kind of interference:
computational paths leading to correct output should interfere
constructively, others should interfere destructively

3. Measurement of final state gives classical output

Two important questions:

1. Can we build such a computer?

2. What can it do?

This tutorial: 2nd question, focus on quantum algorithms
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Quantum parallelism

I Suppose classical algorithm computes f : {0, 1}n ! {0, 1}m

I Convert this to quantum circuit U : |xi|0i 7! |xi|f (x)i
I We can now compute f “on all inputs simultaneously”!

U

0

@ 1p
2n

X

x2{0,1}n
|xi|0i

1

A =
1p
2n

X

x2{0,1}n
|xi|f (x)i

I This contains all 2n function values!

I But observing gives only one random |xi|f (x)i
All other information will be lost

I More tricks needed for successful quantum computation

Interference!
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Deutsch-Jozsa problem

I Given: function f : {0, 1}n ! {0, 1} (2n bits) , s.t.
(1) f (x) = 0 for all x (constant),
or
(2) f (x) = 0 for 1

2

· 2n of the x ’s (balanced)

I Question: is f constant or balanced?

I Classically: need at least 1

2

· 2n + 1 steps (“queries” to f )

I Quantumly: O(n) gates su�ce, and only 1 query

I Query: application of unitary Of : |x , 0i 7! |x , f (x)i
I More generally: Of : |x , bi 7! |x , b � f (x)i (b 2 {0, 1})
I NB using |�i = H|1i, we can get queried bit as a ±-phase:

Of |xi|�i = (�1)f (x)|xi|�i
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Deutsch-Jozsa algorithm

|0i

|0i

|1i

measure

H
...

H

H

H
...

H

H

Of

I Starting state: |0 . . . 0| {z }
n

i|1i

I After first Hadamards:
1p
2n

X

x2{0,1}n
|xi|�i

I Make one query:
1p
2n

X

x2{0,1}n
(�1)f (x)|xi|�i

I Forget about the last qubit |�i
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Deutsch-Jozsa (continued)

I After second Hadamard:

1p
2n

X

x2{0,1}n
(�1)f (x)

1p
2n

X

y2{0,1}n
(�1)x ·y |yi

I ↵
0...0 =

1

2n

X

x2{0,1}n
(�1)f (x) =

⇢
1 if constant
0 if balanced

I Measurement gives right answer with certainty

I Big quantum-classical separation: O(n) vs ⌦(2n) steps

I But the problem is e�ciently solvable by bounded-error
classical algorithm (just query f at a few random x)
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The meat of this tutorial: 4 quantum algorithms

1. Shor’s factoring algorithm

2. Grover’s search algorithm

3. Ambainis’s collision-finding algorithm

4. HHL algorithm for linear systems
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Factoring

I Given N = p · q, compute the prime factors p and q

I Fundamental mathematical problem since Antiquity

I Fundamental computational problem on logN bits
15 = 3⇥ 5
12140041 = 3413⇥ 3557

I Best known classical algorithms use time 2(logN)

↵
, where

↵ = 1/2 or 1/3

I Its assumed computational hardness is basis of
public-key cryptography (RSA)

I A quantum computer can break this,
using Shor’s e�cient quantum factoring algorithm!
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Overview of Shor’s algorithm

I Classical reduction: choose random x 2 {2, . . . ,N � 1}.
It su�ces to find period r of f (a) = xa mod N

I Shor uses the quantum Fourier transform for period-finding

|0i
...

|0i

|0i

|0i

measure

measure

...QFT

...
...

Of

QFT

I Overall complexity: roughly (logN)2 elementary gates
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Reduction to period-finding

I Pick a random integer x 2 {2, . . . ,N � 1}, s.t. gcd(x ,N)=1

I The sequence x0, x1, x2, x3, . . . mod N cycles:

has an unknown period r (min r > 0 s.t. x r ⌘ 1 mod N)

I With probability � 1/4 (over the choice of x):
r is even and x r/2 ± 1 6⌘ 0 mod N

I Then:
x r = (x r/2)2 ⌘ 1 mod N ()

(x r/2 + 1)(x r/2 � 1) ⌘ 0 mod N ()
(x r/2 + 1)(x r/2 � 1) = kN for some k

I x r/2 + 1 and x r/2 � 1 each share a factor with N

I This factor of N can be extracted using gcd-algorithm
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Quantum Fourier transform

I Fourier basis (dimension q): |�ji =
1
p
q

q�1X

k=0

e
2⇡ijk
q |ki

Such a state is unentangled |�j
0

j
1

j
2

i =
1p
8

(|0i+e2⇡i0.j2 |1i)⌦(|0i+e2⇡i0.j1j2 |1i)⌦(|0i+e2⇡i0.j0j1j2 |1i)

I Quantum Fourier Transform: |ji 7! |�ji
I If q = 2`, then can implement this with O(`2) gates.

I For Shor: choose q = 2` in (N2, 2N2]
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Easy case for the analysis: r |q
1. Apply QFT to 1st register of |0 . . . 0i| {z }

` qubits

|0 . . . 0i| {z }
dlogN qubitse

:

1
p
q

q�1X

a=0

|ai|0i

2. Compute f (a) = xa mod N (by repeated squaring)

1
p
q

q�1X

a=0

|ai|xa mod Ni

3. Observing 2nd register gives |x s mod Ni (random s < r)

1st register collapses to superposition of

|si, |r + si, |2r + si, . . . , |q � r + si
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Easy case: r |q (continued)

Recall: 1st register is in superposition

q/r�1X

j=0

|jr + si

4. Apply QFT once more:

q/r�1X

j=0

q�1X

b=0

e2⇡i
(jr+s)b

q |bi =
q�1X

b=0

e2⇡i
sb
q

0

@
q/r�1X

j=0

⇣
e2⇡i

rb
q

⌘j

1

A

| {z }
geometric sum

|bi

Sum 6= 0 i↵ e2⇡i
rb
q = 1 i↵

rb

q
is an integer

Only the b that are multiples of
q

r
have non-zero amplitude!
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Easy case: r |q (continued)

5. Observe 1st register: random multiple b = c
q

r
, c 2 [0, r):

b

q
=

c

r

I b and q are known; c and r are unknown

I c and r are coprime with probability � 1/ log log r

I Then: we find r by writing
b

q
in lowest terms

I Since we can find r , we can find prime factors of N !

Hard case (r 6 |q) still works approximately: measurement gives

b s.t.
b

q
⇡ c

r
; we can find r with some extra number theory
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Summary for Shor’s algorithm

I Reduce factoring to finding the period r of modular
exponentiation function f (a) = xa mod N

I Use quantum Fourier transform to find a multiple of q/r ,
repeat a few times to find r

I Overall complexity:

I QFT takes O(log q)2 = O(logN)2 elementary gates
I Modular exponentiation: ⇡ (logN)2 log logN gates;

classical computation by repeated squaring
(use Schönhage-Strassen algo for fast multiplication)

I Everything repeated O(log logN) times
I Classical postprocessing takes O(logN)2 gates

I Roughly (logN)2 elementary gates in total
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The search problem

I We want to search for some good item in
an unordered N-element search space

I Model this as function f : {0, 1}n ! {0, 1} (N = 2n)
f (x) = 1 if x is a solution

I We can query f :
Of : |xi|0i 7! |xi|f (x)i
or
Of : |xi 7! (�1)f (x)|xi

I Goal: find a solution

I Classically this takes O(N) steps (queries to f )

I Grover’s algorithm does it in O(
p
N) steps
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Grover’s algorithm

I Apply Grover iteration G k times on uniform starting state

8
>>>><

>>>>:

n

|0i

|0i

|0i

9
>>>>=

>>>>;

measure

H

H

H

G G

. . .

. . .

. . .

G

| {z }
k

I Idea: each iteration moves amplitude towards solutions
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The good state and the bad state

I Suppose there are t solutions

I Define “good” state and “bad” state:

|G i = 1p
t

X

x :f (x)=1

|xi |Bi = 1p
N � t

X

x :f (x)=0

|xi

I Initial uniform state is |Ui = sin(✓)|G i+ cos(✓)|Bi
for ✓ = arcsin(

p
t/N)

I All intermediate states will be in span{|G i, |Bi}
I Grover iteration is a rotation over angle 2✓

so after k iterations the state is

sin((2k + 1)✓)|G i+ cos((2k + 1)✓)|Bi
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One Grover iteration: rotation by 2✓

G = H⌦nRH⌦n · Of , where R reflects through |0ni
This G is the product of two reflections:

1. Of reflects through |Bi
2. H⌦nRH⌦n reflects through |Ui

Starting state: Reflect through |Bi: Reflect through |Ui:

|Bi

|G i

✓

|Ui
6

-⇠⇠⇠⇠: |Bi

|G i

✓
✓

|Ui

Of |Ui

6

-⇠⇠⇠⇠:
XXXXz

|Bi

|G i

✓
2✓ |Ui

G|Ui6

-⇠⇠⇠⇠:⌦
⌦
⌦⌦�
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How many iterations do we need?

I Success probability after k iterations:

sin2((2k + 1)✓), with ✓ = arcsin(
p

t/N) ⇡
p
t/N

I If k =
⇡

4✓
� 1

2
, then success probability is sin2(⇡/2) = 1

I Example: t = N/4 solutions ) k = 1

I In general, round k to nearest integer (incurs small error)

I Query complexity is k ⇡ ⇡

4

p
N/t

This is optimal for a quantum algorithm!

I Gate complexity is O(
p
N/t logN)
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Summary for Grover’s algorithm

I Quantum computers can search any N-element space with
t = "N solutions, in O(

p
N/t) = O(1/

p
") iterations

1. Set up uniform starting state |Ui
2. Repeat the following O(1/

p
") times:

2.1 Reflect through |Bi (costs 1 query)

2.2 Reflect through |Ui (costs O(logN) gates)

3. Measure final state to obtain an index i

I If we don’t know " = t/N, we can try di↵erent guesses, still
find a solution with expected number of O(1/

p
") iterations

I The algorithm has a small error probability,
but can be modified to error 0 if we know t exactly
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Application: Speed up NP problems

I Given a propositional formula f (x
1

, . . . , xn)
Computable in time poly(n)

Question: is f satisfiable?

I This is a typical NP-complete problem

I Search space of N = 2n possibilities

I Classically: exhaustive search is the best we know.
This takes about N steps

I Quantumly: Grover finds a satisfying assignment inp
N · poly(n) steps

I Because Grover is optimal, we believe that NP-hard problems
cannot be e�ciently computed by quantum algorithms
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Classical random walks

I Explore a graph by moving to
random neighbor in each step

I If G is d-regular and connected: normalized adjacency matrix
has “spectral gap” � 2 (0, 1). Starting from any vertex,
O(1/�) random walk steps produce uniform distribution

I Suppose an "-fraction of the vertices are “marked” and we
want to find such a marked vertex. Simple classical algorithm:

1. Start at random vertex v (setup cost S)

2. Do the following O(1/") times:

2.1 Check if v is marked (checking cost C)

2.2 Rerandomize v by O(1/�) RW steps (step cost U)

This finds marked item w.h.p. Cost is S+
1

"

✓
C+

1

�
U

◆
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Quantum walks

I Quantum walk: walk in superposition over vertices (edges)

I Analogy with Grover’s algorithm:
|G i = uniform superposition over edges with marked endpoint
|Bi = uniform superposition over all other edges
|Ui = sin(✓)|G i+ cos(✓)|Bi, ✓ = arcsin(1/

p
")

1. Setup starting state |Ui (setup cost S)

2. Repeat the following O(1/
p
") times:

2.1 Reflect through |Bi (checking cost C)

2.2 Reflect through |Ui
(can be implemented using 1/

p
� QW steps, each at cost U)

3. Measure and check that resulting vertex is marked.

Correctness analogous to Grover. Cost is S+ 1p
"

⇣
C+ 1p

�
U

⌘
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Example: Ambainis’s algorithm (’03)

Suppose we want to find a collision in h : [n] ! N

I G =Johnson graph: the vertices are the sets R ✓ [n] of size r .
Edge between sets R and R 0 if they di↵er in 1 element

I Fraction of vertices of G that contain collision: " � (r/n)2

I Known: spectral gap is � ⇡ 1/r

I With each vertex R , algorithm records h(R);
setup cost S = r ; checking cost C = 0; update cost U = O(1)

I Total cost: S+
1p
"

✓
C+

1p
�
U

◆
r=n2/3
= O(n2/3)

I Classically: ⇥(n) f -evaluations needed

If h is 2-to-1: run on random set of
p
n inputs (whp 1 collision) to

get complexity O(n1/3)

Classically: ⇥(
p
n) f -evaluations, by birthday paradox
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HHL algorithm for “solving” large linear systems

I Solving large linear systems Ax = b is one of the most
important problems in science and engineering.

Goal: given matrix A and vector b, find vector x

I Harrow-Hassidim-Lloyd’09: “solves” this problem
exponentially faster by preparing state |xi IF

system is well-behaved:

Assumptions

(1) state |bi easy to prepare;

(2) A is well-conditioned: �max/�min not too big;

(3) unitary operation e iA is easy to apply (sparseness su�ces)
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How does the Harrow-Hassidim-Lloyd algorithm work?

I Input: Hermitian matrix A 2 RN⇥N and vector b 2 RN

Goal: approximately prepare |xi, where Ax = b

I Let v
1

, . . . , vN ,�1, . . . ,�N be eigenvectors, eigenvalues of A

I HHL algorithm:

1. Prepare quantum state |bi =
PN

i=1

�i |vi i
NB: applying A�1 corresponds to multiplying with ��1

i

2. Use eigenvalue estimation:
PN

i=1

�i |vi i|�i i

3. Make new qubit
PN

i=1

�i |vi i|�i i
✓
��1

i |0i+
q
1� ��2

i |1i
◆

4. Uncompute |�i i by inverting eigenvalue estimation

5. Amplify the |0i-part to end with
PN

i=1

�i�
�1

i |vi i = |xi
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What else can a quantum computer do?

I Similar to Shor: discrete logarithm, solve Pell’s equation,
compute properties of number fields, . . .

I Similar to Grover: maximum-finding, approximate counting,
shortest paths in graphs, minimum spanning trees, . . .

I Similar to quantum walks: finding small subgraphs,
matrix-product verification, junta-testing, backtracking, . . .

I Similar to HHL: quantum machine learning, principal
component analysis, recommendation systems, . . .

I E�ciently simulating quantum-mechanical systems.

Could be very important for drug design, material sciences. . .
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What quantum algorithms cannot do

I You can simulate every quantum algorithm with an
exponentially slower classical computer

This implies that the set of computable problems doesn’t
change: Church-Turing thesis remains intact

I For many problems we can show that quantum computers
give no significant speed-up

or at most a quadratic speed-up (e.g., Grover is optimal)

I NP-complete problems form a famous and important class of
hard computational problems: satisfiability, Traveling
Salesman Problem, protein folding,. . .

Conjectured: quantum computers can’t e�ciently solve them
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Conclusion

I Quantum mechanics is the best physical theory we have

I Fundamentally di↵erent from classical physics:

superposition, interference, entanglement

I Quantum algorithms use these non-classical e↵ects to solve
some problems much faster

I We saw 4 important examples:

1. Shor’s factoring algorithm
2. Grover’s search algorithm
3. Ambainis’s collision-finding algorithm
4. HHL algorithm for linear systems

Much more left to be discovered. . .
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Phase estimation

I Suppose we can apply U and are given one of its eigenvectors
|vi as a quantum state. Goal: learn eigenvalue e2⇡i✓

Suppose phase ✓ = 0.✓
1

. . . ✓` has ` bits of precision

I Remember QFT: |ji 7! |�ji =
1p
2`

2

`�1X

k=0

e
2⇡ijk

2

` |ki

I Phase estimation algorithm:
1. Start with |0`i|vi
2. Apply H⌦`:

1p
2`

X

k2{0,1}`

|ki|vi

3. Conditioned on 1st register, apply Uk to 2nd register:

1p
2`

X

k2{0,1}`

|kie2⇡i✓k |vi = 1p
2`

X

k2{0,1}`

e2⇡i✓k |ki|vi

4. Inverse QFT on first register gives j = ✓2` = ✓
1

. . . ✓`

I With O(1/") applications of U: "-error approximation of ✓


