
1/ 37

Quantum Algorithms

Tutorial

Ronald de Wolf

2/ 37

Post-quantum cryptography

! Quantum computers can break public-key cryptography that
is based on assuming hardness of factoring, discrete logs, and
a few other problems

! Post-quantum cryptography tries to design classical crypto
schemes that cannot be broken e!ciently by quantum
algorithms

! Classicalcodemakers vsquantum codebreakers

! This tutorial:

Get to know your enemy!

3/ 37

Quantum bits

! Richard Feynman,
David Deutsch
in early 1980s:

Harness quantum e"ects for useful computations!

! Classical bit is 0 or1; quantum bit is superposition of 0 and1

For example, can use an electron as qubit,
with 0 = Òspin upÓ and 1 = Òspin downÓ

! 2 qubits is superposition of4 basis states (00,01,10,11)
3 qubits is superposition of8 basis states (000,001, . . .)
. . .
1000 qubits: superposition of21000 states

! Massive space for computation!Easier said than done. . .

4/ 37

A bit of math: states

! 1-qubit basis states:|0i =
✓

1
0

◆
and |1i =

✓
0
1

◆

! Qubit: superposition↵
0

|0i + ↵
1

|1i =
✓
↵
0

↵
1

◆
2 C2

!

2-qubit basis state:|10i = |1i ⌦ |0i =
✓

0
1

◆
⌦
✓

1
0

◆
=

0

BB@

0
0
1
0

1

CCA

! n-qubit state: | i =
X

x2{0,1}n
↵x |xi 2 C2

n

! Axiom: measuringstate | i gives|xi with probability |↵x |2

! Hence
X

x2{0,1}n
|↵x |2 = 1, so | i is a vector of length 1

5/ 37

A bit of math: operations

! Quantum operation maps quantum states to quantum states
and is linear =) corresponds tounitary matrix

! Example 1-qubit gates:

X =
✓

0 1
1 0

◆
, Z =

✓
1 0
0 �1

◆
, T =

✓
1 0
0 e⇡i/4

◆

! More quantum:Hadamardgate =
1p
2

✓
1 1
1 �1

◆

H|0i = 1p
2

(|0i + |1i), H|1i = 1p
2

(|0i � |1i)

But H 1p
2

(|0i + |1i) = 1p
2

H|0i + 1p
2

H|1i = |0i

Interference!

! Controlled-NOTgate on 2 qubits:|a, bi 7! |a, a� bi

6/ 37

Quantum circuits

! A classical Boolean circuit consists of
AND, OR, and NOT gates on ann-bit register

! A quantum circuitconsists of
unitary quantum gateson ann-qubit register
(allowingH, T , and CNOT gates su!ces)

Example:

input
qubits

|0i

|0i -

-
C

H -

-

-
Þnal
state

|00i H⌦I�! 1p
2

(|00i + |10i) CNOT�! 1p
2

(|00i + |11i)

This circuit creates an EPR-pair:entanglement!

7/ 37

Recap: From classical to quantum computation

! bits �! qubits

! AND/OR/NOT gates �! unitary quantum gates

! classical circuit �! quantum circuit

! reading the output bit�! measuringÞnal state

8/ 37

Quantum mechanical computers

1. Start with all qubits in easily-preparable state (e.g. all|0i)

2. Run a circuit that produces the right kind of interference:
computational paths leading to correct output should interfere
constructively, others should interfere destructively

3. Measurement of Þnal state gives classical output

Two important questions:

1. Can we build such a computer?

2. What can it do?

This tutorial: 2nd question, focus onquantum algorithms

9/ 37

Quantum parallelism

! Suppose classical algorithm computesf : {0, 1}n ! {0, 1}m

! Convert this to quantum circuitU : |xi|0i 7! |xi|f (x)i
! We can now computef Òon all inputssimultaneouslyÓ!

U

0

@ 1p
2n

X

x2{0,1}n
|xi|0i

1

A =
1p
2n

X

x2{0,1}n
|xi|f (x)i

! This contains all 2n function values!
! But observing gives only one random|xi|f (x)i

All other information will be lost
! More tricks needed for successful quantum computation

Interference!

10/ 37

Deutsch-Jozsa problem

! Given: functionf : {0, 1}n ! {0, 1} (2n bits) , s.t.
(1) f (x) = 0 for all x (constant),
or
(2) f (x) = 0 for 1

2

· 2n of the xÕs (balanced)
! Question: isf constant or balanced?

! Classically: need at least1
2

· 2n + 1 steps (ÒqueriesÓ tof)
! Quantumly: O(n) gates su!ce, and only 1 query

! Query: application of unitaryOf : |x , 0i 7! |x , f (x)i
! More generally:Of : |x , bi 7! |x , b � f (x)i (b 2 {0, 1})
! NB using|�i = H|1i, we can get queried bit as a±-phase:

Of |xi|�i = (�1)f (x)|xi|�i

11/ 37

Deutsch-Jozsa algorithm

|0i

|0i

|1i

measure

H
...
H

H

H
...
H

H

Of

! Starting state: |0 . . . 0| {z }
n

i|1i

! After Þrst Hadamards:
1p
2n

X

x2{0,1}n
|xi|�i

! Make one query:
1p
2n

X

x2{0,1}n
(�1)f (x)|xi|�i

! Forget about the last qubit|�i

12/ 37

Deutsch-Jozsa (continued)

! After secondHadamard:

1p
2n

X

x2{0,1}n
(�1)f (x)

1p
2n

X

y2{0,1}n
(�1)x ·y |yi

! ↵
0...0 =

1
2n

X

x2{0,1}n
(�1)f (x) =

⇢
1 if constant
0 if balanced

! Measurementgives right answer with certainty

! Big quantum-classical separation:O(n) vs #(2n) steps

! But the problem is e!ciently solvable by bounded-error
classical algorithm(just query f at a few randomx)

13/ 37

The meat of this tutorial: 4 quantum algorithms

1. ShorÕs factoring algorithm

2. GroverÕs search algorithm

3. AmbainisÕs collision-Þnding algorithm

4. HHL algorithm for linear systems

14/ 37

Factoring

! GivenN = p · q, compute the prime factorsp and q

! Fundamentalmathematicalproblem since Antiquity
! Fundamentalcomputationalproblem on logN bits

15 = 3 ⇥ 5
12140041= 3413⇥ 3557

! Best known classical algorithms use time 2(logN)

↵
, where

↵ = 1/2 or 1/3
! Its assumedcomputational hardness is basis of

public-key cryptography(RSA)

! A quantum computer canbreakthis,
usingShorÕs e!cient quantum factoring algorithm!

15/ 37

Overview of Shor’s algorithm

! Classical reduction:choose randomx 2 {2, . . . ,N � 1}.
It su!ces to Þnd period r of f (a) = xa mod N

! Shor uses thequantum Fourier transformfor period-Þnding

|0i
...

|0i

|0i

|0i

measure

measure

...QFT

...
...

Of

QFT

! Overall complexity: roughly (logN)2 elementary gates

16/ 37

Reduction to period-finding

! Pick a random integerx 2 {2, . . . ,N � 1}, s.t. gcd(x ,N)=1
! The sequencex0, x1, x2, x3, . . . mod N cycles:

has an unknownperiod r (min r > 0 s.t. x r ⌘ 1 modN)
! With probability � 1/4 (over the choice ofx):

r is even andx r/2 ± 1 6⌘ 0 modN

! Then:
x r = (x r/2)2 ⌘ 1 modN ()

(x r/2 + 1)(x r/2 � 1) ⌘ 0 modN ()
(x r/2 + 1)(x r/2 � 1) = kN for somek

! x r/2 + 1 and x r/2 � 1 each share a factor withN

! This factor ofN can be extracted using gcd-algorithm

17/ 37

Quantum Fourier transform

! Fourier basis(dimensionq): |�ji =
1
p
q

q�1X

k=0

e
2⇡ijk
q |ki

Such a state is unentangled|�j
0

j
1

j
2

i =

1p
8

(|0i+ e2⇡i0.j2 |1i)⌦(|0i+ e2⇡i0.j1j2 |1i)⌦(|0i+ e2⇡i0.j0j1j2 |1i)

! Quantum Fourier Transform:|ji 7! |�ji
! If q = 2 `, then can implement this withO(`2) gates.

! For Shor: chooseq = 2 ` in (N2, 2N2]

18/ 37

Easy case for the analysis: r |q
1. Apply QFT to 1st register of|0 . . . 0i| {z }

` qubits

|0 . . . 0i| {z }
dlogN qubitse

:

1
p
q

q�1X

a=0

|ai|0i

2. Computef (a) = xa mod N (by repeated squaring)

1
p
q

q�1X

a=0

|ai|xa mod Ni

3. Observing 2nd register gives|x s mod Ni (random s < r)

1st register collapses to superposition of

|si, |r + si, |2r + si, . . . , |q � r + si

19/ 37

Easy case: r |q (continued)

Recall: 1st register is in superposition
q/r�1X

j=0

|jr + si

4. Apply QFT once more:

q/r�1X

j=0

q�1X

b=0

e2⇡i
(jr+s)b

q |bi =
q�1X

b=0

e2⇡i
sb
q

0

@
q/r�1X

j=0

⇣
e2⇡i

rb
q

⌘j

1

A

| {z }
geometric sum

|bi

Sum 6= 0 i" e2⇡i
rb
q = 1 i"

rb

q
is an integer

Only the b that are multiples of
q

r
have non-zero amplitude!

20/ 37

Easy case: r |q (continued)

5. Observe 1st register:random multipleb = c
q

r
, c 2 [0, r):

b

q
=

c

r

! b and q are known; c and r are unknown

! c and r are coprime with probability� 1/ log logr

! Then: we Þndr by writing
b

q
in lowest terms

! Since we can Þndr , we can Þnd prime factors ofN !

Hard case (r 6 |q) still works approximately: measurement gives

b s.t.
b

q
⇡ c

r
; we can Þndr with some extra number theory

21/ 37

Summary for Shor’s algorithm

! Reduce factoring to Þnding theperiod r of modular
exponentiation functionf (a) = xa mod N

! Usequantum Fourier transformto Þnd a multiple ofq/r ,
repeat a few times to Þndr

! Overall complexity:
I QFT takesO(logq)2 = O(logN)2 elementary gates
I Modular exponentiation:⇡ (logN)2 log logN gates;

classical computation by repeated squaring
(use Sch¬onhage-Strassen algo for fast multiplication)

I Everything repeatedO(log logN) times
I Classical postprocessing takesO(logN)2 gates

! Roughly(logN)2 elementary gates in total

22/ 37

The search problem

! We want to search for some good item in
an unorderedN-element search space

! Model this as functionf : {0, 1}n ! {0, 1} (N = 2 n)
f (x) = 1 if x is a solution

! We canquery f :
Of : |xi|0i 7! |xi|f (x)i
or
Of : |xi 7! (�1)f (x)|xi

! Goal: Þnd a solution
! Classically this takesO(N) steps(queries tof)
! GroverÕs algorithm does it inO(

p
N) steps

23/ 37

Grover’s algorithm

! Apply Grover iterationG k times on uniform starting state

8
>>>><

>>>>:

n

|0i

|0i

|0i

9
>>>>=

>>>>;

measure

H

H

H

G G

. . .

. . .

. . .

G

| {z }
k

! Idea: each iteration moves amplitude towards solutions

24/ 37

The good state and the bad state

! Suppose there aret solutions
! DeÞne ÒgoodÓ state and ÒbadÓ state:

|G i =
1p
t

X

x :f (x)=1

|xi |Bi =
1p

N � t

X

x :f (x)=0

|xi

! Initial uniform state is|Ui = sin(✓)|G i + cos(✓)|Bi
for ✓ = arcsin(

p
t/N)

! All intermediate states will be in span{|G i, |Bi}
! Grover iteration is arotation over angle 2✓

so afterk iterations the state is

sin((2k + 1) ✓)|G i + cos((2k + 1) ✓)|Bi

25/ 37

One Grover iteration: rotation by 2✓

G = H⌦nRH⌦n · Of , whereR reßects through|0ni
This G is the product of two reßections:

1. Of reßects through|Bi
2. H⌦nRH⌦n reßects through|Ui

Starting state: Reßect through|Bi: Reßect through|Ui:

|Bi

|G i

✓

|Ui
6

-⇠⇠⇠⇠: |Bi

|G i

✓
✓

|Ui

Of |Ui

6

-⇠⇠⇠⇠:
XXXXz

|Bi

|G i

✓
2✓ |Ui

G|Ui6

-⇠⇠⇠⇠:⌦
⌦
⌦⌦�

26/ 37

How many iterations do we need?

! Success probability afterk iterations:

sin2((2k + 1) ✓), with ✓ = arcsin(
p

t/N) ⇡
p
t/N

! If k =
⇡

4✓
� 1

2
, then success probability is sin2(⇡/2) = 1

! Example:t = N/4 solutions) k = 1

! In general, roundk to nearest integer (incurs small error)

! Query complexity isk ⇡ ⇡

4

p
N/t

This is optimal for a quantum algorithm!

! Gate complexity isO(
p
N/t logN)

27/ 37

Summary for Grover’s algorithm

! Quantum computers can search anyN-element space with
t = "N solutions, inO(

p
N/t) = O(1/

p
") iterations

1. Set up uniform starting state|Ui
2. Repeat the followingO(1/

p
") times:

2.1 Reflect through |Bi (costs 1 query)

2.2 Reflect through |Ui (costs O(logN) gates)

3. Measure Þnal state to obtain an indexi

! If we donÕt know" = t/N, we can try di"erent guesses, still
Þnd a solution with expected number ofO(1/

p
") iterations

! The algorithm has a small error probability,
but can be modiÞed to error 0if we knowt exactly

28/ 37

Application: Speed up NP problems

! Given a propositional formulaf (x
1

, . . . , xn)
Computable in time poly(n)

Question: isf satisÞable?

! This is a typical NP-complete problem
! Search space ofN = 2 n possibilities
! Classically: exhaustive search is the best we know.

This takes aboutN steps
! Quantumly: Grover Þnds a satisfying assignment inp

N · poly(n) steps
! Because Grover is optimal,we believe that NP-hard problems

cannot be e!ciently computed by quantum algorithms

29/ 37

Classical random walks

! Explore a graph by moving to
random neighbor in each step

! If G is d-regular and connected: normalized adjacency matrix
has Òspectral gapÓ� 2 (0, 1). Starting from any vertex,
O(1/�) random walk steps produce uniform distribution

! Suppose an"-fraction of the vertices are ÒmarkedÓ and we
want to Þnd such a marked vertex.Simple classical algorithm:

1. Start at random vertexv (setup cost S)

2. Do the followingO(1/") times:

2.1 Check if v is marked (checking cost C)

2.2 Rerandomize v by O(1/!) RW steps (step cost U)

This Þnds marked item w.h.p. Cost isS +
1
"

✓
C +

1
�
U

◆

30/ 37

Quantum walks

! Quantum walk: walk in superposition over vertices (edges)

! Analogy with GroverÕs algorithm:
|G i = uniform superposition over edges with marked endpoint
|Bi = uniform superposition over all other edges
|Ui = sin(✓)|G i + cos(✓)|Bi, ✓ = arcsin(1/

p
")

1. Setup starting state|Ui (setup cost S)

2. Repeat the followingO(1/
p
") times:

2.1 Reflect through |Bi (checking cost C)

2.2 Reflect through |Ui
(can be implemented using 1/

p
! QW steps, each at cost U)

3. Measure and check that resulting vertex is marked.

Correctness analogous to Grover. Cost isS + 1p
"

⇣
C + 1p

�
U

⌘

31/ 37

Example: Ambainis’s algorithm (’03)

Suppose we want to Þnd a collision inh : [n] ! N

! G =Johnson graph: the vertices are the setsR ✓ [n] of sizer .
Edge between setsR andR 0 if they di"er in 1 element

! Fraction of vertices ofG that contain collision:" � (r/n)2

! Known: spectral gap is� ⇡ 1/r
! With each vertexR , algorithm recordsh(R);

setup costS = r ; checking costC = 0; update costU = O(1)

! Total cost: S +
1p
"

✓
C +

1p
�
U

◆
r=n2/3= O(n2/3)

! Classically: $(n) f -evaluations needed

If h is 2-to-1: run on random set of
p
n inputs (whp 1 collision) to

get complexityO(n1/3)

Classically: $(
p
n) f -evaluations, by birthday paradox

32/ 37

HHL algorithm for “solving” large linear systems

! Solving large linear systemsAx = b is one of the most
important problems in science and engineering.

Goal: given matrixA and vectorb, Þnd vectorx

! Harrow-Hassidim-LloydÕ09: ÒsolvesÓ this problem
exponentially fasterby preparing state|xi IF

system is well-behaved:

Assumptions

(1) state |bi easy to prepare;

(2) A is well-conditioned:�max/�min not too big;

(3) unitary operatione iA is easy to apply (sparseness su!ces)

33/ 37

How does the Harrow-Hassidim-Lloyd algorithm work?

! Input: Hermitian matrixA 2 RN⇥N and vectorb 2 RN

Goal: approximately prepare|xi, whereAx = b

! Let v
1

, . . . , vN ,�1, . . . ,�N be eigenvectors, eigenvalues ofA

! HHL algorithm:
1. Prepare quantum state|bi =

PN
i=1

�i |vi i
NB: applyingA�1 corresponds to multiplying with��1

i

2. Useeigenvalue estimation:
PN

i=1

�i |vi i|�i i

3. Make new qubit
PN

i=1

�i |vi i|�i i
✓
��1

i |0i +
q

1� ��2

i |1i
◆

4. Uncompute|�i i by inverting eigenvalue estimation

5. Amplify the |0i-part to end with
PN

i=1

�i�
�1

i |vi i = |xi

34/ 37

What else can a quantum computer do?

! Similar to Shor:discrete logarithm, solve PellÕs equation,
compute properties of number Þelds, . . .

! Similar to Grover:maximum-Þnding, approximate counting,
shortest paths in graphs, minimum spanning trees, . . .

! Similar to quantum walks:Þnding small subgraphs,
matrix-product veriÞcation, junta-testing, backtracking, . . .

! Similar to HHL: quantum machine learning, principal
component analysis, recommendation systems, . . .

! E!ciently simulating quantum-mechanical systems.

Could be very important for drug design, material sciences. . .

35/ 37

What quantum algorithms cannotdo

! You can simulate every quantum algorithm with an
exponentially slower classical computer

This implies that the set ofcomputable problems doesnÕt
change:Church-Turing thesis remains intact

! For many problems we can show that quantum computers
give no signiÞcant speed-up

or at most a quadratic speed-up (e.g., Grover is optimal)

! NP-complete problems form a famous and important class of
hard computational problems: satisÞability, Traveling
Salesman Problem, protein folding,. . .

Conjectured: quantum computers canÕt e!ciently solve them

36/ 37

Conclusion

! Quantum mechanics is thebest physical theory we have

! Fundamentally di"erent from classical physics:

superposition, interference, entanglement

! Quantum algorithmsuse these non-classical e"ects to solve
some problems much faster

! We saw 4 important examples:

1. ShorÕs factoring algorithm
2. GroverÕs search algorithm
3. AmbainisÕs collision-Þnding algorithm
4. HHL algorithm for linear systems

Much more left to be discovered. . .

37/ 37

Phase estimation

! Suppose we can applyU and are given one of its eigenvectors
|vi as a quantum state.Goal: learn eigenvaluee2⇡i✓

Suppose phase✓ = 0 .✓
1

. . . ✓` has` bits of precision

! Remember QFT:|ji 7! |�ji =
1p
2`

2

`�1X

k=0

e
2⇡ijk

2

` |ki

! Phase estimation algorithm:
1. Start with |0`i|vi
2. Apply H⌦`:

1p
2`

X

k2{0,1}`

|ki|vi

3. Conditioned on 1st register, applyUk to 2nd register:

1p
2`

X

k2{0,1}`

|kie2⇡i✓k |vi =
1p
2`

X

k2{0,1}`

e2⇡i✓k |ki|vi

4. Inverse QFTon Þrst register givesj = ✓2` = ✓
1

. . . ✓`

! With O(1/") applications ofU: "-error approximation of✓

