Quantum Algorithms
Tutorial

Ronald de Wolf

W Cl)‘u SOf t UNIVERSITEIT AMSTERDAM

Post-quantum cryptography

» Quantum computers can break public-key cryptography that
is based on assuming hardness of factoring, discrete logs, and
a few other problems

» Post-quantum cryptography tries to design classical crypto
schemes that cannot be broken efficiently by quantum
algorithms

» Classical codemakers vs quantum codebreakers

» This tutorial:

Get to know your enemy!

Quantum bits

» Richard Feynman,
David Deutsch
in early 1980s:

Harness quantum effects for useful computations!

» Classical bit is 0 or 1; quantum bit is superposition of 0 and 1

For example, can use an electron as qubit,
with 0 = “spin up” and 1 = “spin down”

> 2 qubits is superposition of 4 basis states (00,01,10,11)
3 qubits is superposition of 8 basis states (000,001, ...)

1000 qubits: superposition of 21990 states

» Massive space for computation! Easier said than done. ..

A bit of math: states

» 1-qubit basis states: |0) = ((1) > and |1) = < (1))

v

Qubit: superposition ag|0) + a;|1) = (Zo > c 2
1

2-qubit basis state: |10) = |1) ® |0) = (2 > ® (é) =

v

n-qubit state: |¢)) = Z axlx) € €%
xe{0,1}n

» Axiom: measuring state |1)) gives |x) with probability |, |2

v

Hence Z lax|? =1, so |[4) is a vector of length 1
x€{0,1}"

o = OO

A bit of math: operations

» Quantum operation maps quantum states to quantum states
and is linear = corresponds to unitary matrix

» Example 1-qubit gates:

0 1 10 10
=(10) 7206 2) 7= (0 ot

1 1 1
» More quantum: Hadamard gate = ﬁ (1 -1 >

HI0) = J5(10) + 1)), HI1) = 5(10) - [1))
But H75(|0) +[1)) = 5H|0) + J5H|1) = [0)
Interference!

» Controlled-NOT gate on 2 qubits: |a, b) — |a,a® b)

Quantum circuits

» A classical Boolean circuit consists of
AND, OR, and NOT gates on an n-bit register

» A quantum circuit consists of
unitary quantum gates on an n-qubit register
(allowing H, T, and CNOT gates suffices)

Example:
input |0>H H c — final
qubits state
0) —

100) #2 25(|00) + [10)) T3 L(|00) + [11))

This circuit creates an EPR-pair: entanglement!

Recap: From classical to quantum computation

> bits —> qubits

v

AND/OR/NOT gates — unitary quantum gates

v

classical circuit —> quantum circuit

v

reading the output bit — measuring final state

Quantum mechanical computers

1. Start with all qubits in easily-preparable state (e.g. all |0))

2. Run a circuit that produces the right kind of interference:
computational paths leading to correct output should interfere
constructively, others should interfere destructively

3. Measurement of final state gives classical output

Two important questions:

1. Can we build such a computer?
2. What can it do?

This tutorial: 2nd question, focus on quantum algorithms

Quantum parallelism

» Suppose classical algorithm computes f : {0,1}" — {0,1}™
» Convert this to quantum circuit U : |x)|0) — [x)|f(x))

» We can now compute f “on all inputs simultaneously”!

1 1
Ul 2 W) =—= 3 XIF)

xe€{0,1}" xe€{0,1}"

» This contains all 2" function values!
» But observing gives only one random |x)|f(x))
All other information will be lost
» More tricks needed for successful quantum computation

Interference!

Deutsch-Jozsa problem

» Given: function f : {0,1}" — {0,1} (2" bits) , s.t.
(1) f(x) = 0 for all x (constant),
or
(2) f(x) =0 for 1 - 2" of the x's (balanced)

» Question: is f constant or balanced?

» Classically: need at least % 2" + 1 steps (“queries” to f)

» Quantumly: O(n) gates suffice, and only 1 query

» Query: application of unitary Of : |x,0) — |x, f(x))
» More generally: Of : |x, b) — |x,b® f(x)) (b € {0,1})

» NB using |—) = H|1), we can get queried bit as a £-phase:
Orlx)|=) = (=1)"9|x)|-)

Deutsch-Jozsa algorithm

0)—H}
: o) : measure
0)—H}—
1) —H
» Starting state: [0...0)|1)
n
1
» After first Hadamards: —— x)|—
= > k)
xe{0,1}n
1
» Make one query: —— —1) x| —
query: —= > (=)I-)
xe{0,1}n
» Forget about the last qubit |—)

Deutsch-Jozsa (continued)

After second Hadamard:

= X (VP ()

x€{0,1}n ye{0,1}"

v

v

B 1 Fx) _ 1 if constant
@0..0 = 5, Z (-1 - { 0 if balanced
xe{0,1}n"

» Measurement gives right answer with certainty

v

Big quantum-classical separation: O(n) vs (2") steps

v

But the problem is efficiently solvable by bounded-error
classical algorithm (just query f at a few random x)

The meat of this tutorial: 4 quantum algorithms

1. Shor’s factoring algorithm

2. Grover's search algorithm

3. Ambainis's collision-finding algorithm

4. HHL algorithm for linear systems

Factoring

» Given N = p - q, compute the prime factors p and g
» Fundamental mathematical problem since Antiquity

» Fundamental computational problem on log N bits
15=3x5
12140041 = 3413 x 3557

» Best known classical algorithms use time 2(°e M) where
a=1/20r1/3

» lts assumed computational hardness is basis of
public-key cryptography (RSA)

» A quantum computer can break this,
using Shor's efficient quantum factoring algorithm!

Overview of Shor's algorithm

» Classical reduction: choose random x € {2,..., N —1}.
It suffices to find period r of f(a) = x? mod N

» Shor uses the quantum Fourier transform for period-finding

o
o |QFT QFT| : measure
O o L
0)—— [—
: : measure
0)——_ |—

» Overall complexity: roughly (log N)? elementary gates

Reduction to period-finding

» Pick a random integer x € {2,..., N — 1}, s.t. gcd(x, N)=1

» The sequence X% xt x%,.x3,... mod N cycles:

has an unknown period r (min r > 0 s.t. x" =1 mod N)

» With probability > 1/4 (over the choice of x):
ris even and x"/2+1 % 0 mod N
> Then:
x" = (x7?)?2 =1 mod N «—
(x72 4+ 1)(x"/? =1) =0 mod N <—
(x"/2 4 1)(x"/? — 1) = kN for some k
» x"/2 41 and x'/?2 — 1 each share a factor with N

» This factor of N can be extracted using gcd-algorithm

Quantum Fourier transform

v

q—
27'rl_/k
Fourier basis (dimension q): |x;) = Z
k:
Such a state is unentangled |xjjj) =

75(10)+e¥702 (1))@ (|0) + 7012 (1)) @ (|0) + €27 002 1))

v

Quantum Fourier Transform: |j) — |x;)

v

If ¢ = 2¢, then can implement this with O(¢?) gates.

150

2 —
Elss

|1
For Shor: choose g = 2¢ in (N2,2N?]

|72)

v

Easy case for the analysis: r|q

1. Apply QFT to 1st register of [0...0) |0...0)
SN——

£ qubits [log N qubits]

[ay

Q0

1
Va3

2. Compute f(a) = x? mod N (by repeated squaring)

|2)(0)

Q
Il
o

Q

=,
7 |a}|x? mod N)

o
I
o

3. Observing 2nd register gives [x* mod N) (random s < r)

1st register collapses to superposition of

|S>a|r+5>>|2r+5>a'-->|q_r+5>

Easy case: r|q (continued)

q/r-1
Recall: 1st register is in superposition Z ljr +s)
j=0
4. Apply QFT once more:
q/r—1q-1 . g-1 q/r—1 .
- (jr+s)b isb jrb\J
e27rl 7 |b> _ eZ7rl a Z (627” a) ‘b)
j=0 b=0 b=0 j=0

geometric sum

Sum # 0 iff 2" = 1iff ré) is an integer

Only the b that are multiples of q have non-zero amplitude!
r

Easy case: r|q (continued)

5. Observe 1st register: random multiple b = cg, ce[0,r):
r

b_c
:

» b and g are known; ¢ and r are unknown

» ¢ and r are coprime with probability > 1/ loglog r
: ... b.
» Then: we find r by writing — in lowest terms
q

» Since we can find r, we can find prime factors of N !

Hard case (r [q) still works approximately: measurement gives

c : .
bs.t. — ~ —; we can find r with some extra number theory
r

Summary for Shor's algorithm

» Reduce factoring to finding the period r of modular
exponentiation function f(a) = x? mod N

» Use quantum Fourier transform to find a multiple of q/r,
repeat a few times to find r

» Overall complexity:

» QFT takes O(log q)? = O(log N)? elementary gates
» Modular exponentiation: ~ (log N)? loglog N gates;
classical computation by repeated squaring
(use Schonhage-Strassen algo for fast multiplication)

» Everything repeated O(loglog V) times
» Classical postprocessing takes O(log N)? gates

» Roughly (log N)? elementary gates in total

The search problem

» We want to search for some good item in
an unordered N-element search space

» Model this as function f : {0,1}" — {0,1} (N =2")
f(x) = 1if x is a solution
» We can query f:
Or : [¥)[0) = [x)|f(x))
or
O : x) = (=1))
» Goal: find a solution
» Classically this takes O(N) steps (queries to f)
» Grover's algorithm does it in O(v/N) steps

Grover's algorithm

» Apply Grover iteration G k times on uniform starting state

o -
nq 10) @ g g g +— measure
o {] —

k

> ldea: each iteration moves amplitude towards solutions

The good state and the bad state

» Suppose there are t solutions

v

Define “good” state and “bad” state:

1 1
©=Z > W = >

t x:f(x)=1 x:f(x)=0

v

Initial uniform state is |U) = sin(0)|G) + cos(6)|B)
for @ = arcsin(4/t/N)

All intermediate states will be in span{|G), |B)}
Grover iteration is a rotation over angle 260

v

v

so after k iterations the state is

sin((2k +1)0)|G) + cos((2k + 1)8)|B)

One Grover iteration: rotation by 26

G = H®"RH®" . Of, where R reflects through |0")
This G is the product of two reflections:

1. Or reflects through |B)
2. H®"RH®" reflects through |U)

Starting state: Reflect through |B): Reflect through |U):
G) |G) G)

G|u)
f\U> V) /2 T|U>
B) 1B) B)

Or|U)

How many iterations do we need?

v

Success probability after k iterations:

sin?((2k + 1)), with 8 = arcsin(\/t/N) = \/t/N

v

1
If k = I—H ~ 5 then success probability is sin?(7/2) = 1

v

Example: t = N/4 solutions = k =1

v

In general, round k to nearest integer (incurs small error)

v

Query complexity is k =~ % N/t
This is optimal for a quantum algorithm!

Gate complexity is O(1/N/t log N)

v

Summary for Grover's algorithm

» Quantum computers can search any N-element space with
t = eN solutions, in O(\/N/t) = O(1/4/¢) iterations
1. Set up uniform starting state |U)
2. Repeat the following O(1/+/¢) times:

2.1 Reflect through |B) (costs 1 query)
2.2 Reflect through |U) (costs O(log N) gates)

3. Measure final state to obtain an index i

» If we don't know € = t/N, we can try different guesses, still
find a solution with expected number of O(1/4/¢) iterations

> The algorithm has a small error probability,
but can be modified to error 0 if we know t exactly

Application: Speed up NP problems

» Given a propositional formula f(xi,...,x,)
Computable in time poly(n)

Question: is f satisfiable?

» This is a typical NP-complete problem

» Search space of N = 2" possibilities

» Classically: exhaustive search is the best we know.
This takes about N steps

» Quantumly: Grover finds a satisfying assignment in
V/N - poly(n) steps

» Because Grover is optimal, we believe that NP-hard problems
cannot be efficiently computed by quantum algorithms

Classical random walks /}//fjﬁ“;\;\\\v
) <£ /\) / \\\
» Explore a graph by moving to L \\t\/ﬂg
random neighbor in each step \\»’/////

» If G is d-regular and connected: normalized adjacency matrix
has “spectral gap” ¢ € (0,1). Starting from any vertex,
O(1/6) random walk steps produce uniform distribution

» Suppose an e-fraction of the vertices are “marked” and we
want to find such a marked vertex. Simple classical algorithm:

1. Start at random vertex v (setup cost S)
2. Do the following O(1/¢) times:

2.1 Check if v is marked (checking cost C)
2.2 Rerandomize v by O(1/8) RW steps (step cost U)

This finds marked item w.h.p. Cost is S + é (C + ;U)

Quantum walks

» Quantum walk: walk in superposition over vertices (edges)

» Analogy with Grover's algorithm:
|G) = uniform superposition over edges with marked endpoint
|B) = uniform superposition over all other edges
|U) =sin(0)|G) + cos(0)|B), 6 = arcsin(1/1/<)

1. Setup starting state |U) (setup cost S)
2. Repeat the following O(1/+/¢) times:

2.1 Reflect through |B) (checking cost C)
2.2 Reflect through |U)
(can be implemented using 1//6 QW steps, each at cost U)

3. Measure and check that resulting vertex is marked.

Correctness analogous to Grover. Cost is S + % (C + %U)

Example: Ambainis’s algorithm ('03)

Suppose we want to find a collision in h: [n] = N

>

>

>

G =Johnson graph: the vertices are the sets R C [n] of size r.
Edge between sets R and R’ if they differ in 1 element

Fraction of vertices of G that contain collision: £ > (r/n)?
Known: spectral gap is d ~ 1/r

With each vertex R, algorithm records h(R);
setup cost S = r; checking cost C = 0; update cost U = O(1)

1 1 _2/3
Total cost: S+ — (C+ —=U | "= 0O(n*?
va (Ve > ()

Classically: ©(n) f-evaluations needed

If his 2-to-1: run on random set of v/n inputs (whp 1 collision) to
get complexity O(n'/3)

Classically: ©(y/n) f-evaluations, by birthday paradox

HHL algorithm for “solving” large linear systems

» Solving large linear systems Ax = b is one of the most
important problems in science and engineering.

Goal: given matrix A and vector b, find vector x

> Harrow-Hassidim-Lloyd'09: “solves” this problem
exponentially faster by preparing state |x) |F
system is well-behaved:
Assumptions
(1) state |b) easy to prepare;
(2) A is well-conditioned: Ap,ax/Amin Not too big;
iA

(3) unitary operation e is easy to apply (sparseness suffices)

How does the Harrow-Hassidim-Lloyd algorithm work?

» Input: Hermitian matrix A € RV*N and vector b € RV
Goal: approximately prepare |x), where Ax = b

> Let vi,...,Vvn, A1,..., AN be eigenvectors, eigenvalues of A

» HHL algorithm:

1.

Prepare quantum state |b) = Z,N:l Bilvi)
NB: applying A~! corresponds to multiplying with)\,-_1

. Use eigenvalue estimation: Z,N:1 Bilvi)| i)

Make new qubit Z,N:1 Bilvi)| i) ()\i_l|0> +4/1— /\,._2|1>>

Uncompute |\;) by inverting eigenvalue estimation

. Amplify the |0)-part to end with Z,N:l BT i) = |x)

What else can a quantum computer do?

» Similar to Shor: discrete logarithm, solve Pell’s equation,
compute properties of number fields, ...

» Similar to Grover: maximum-finding, approximate counting,
shortest paths in graphs, minimum spanning trees, ...

» Similar to quantum walks: finding small subgraphs,
matrix-product verification, junta-testing, backtracking, ...

» Similar to HHL: quantum machine learning, principal
component analysis, recommendation systems, ...

» Efficiently simulating quantum-mechanical systems.

Could be very important for drug design, material sciences. . .

What quantum algorithms cannot do

> You can simulate every quantum algorithm with an
exponentially slower classical computer

This implies that the set of computable problems doesn’t
change: Church-Turing thesis remains intact

» For many problems we can show that quantum computers
give no significant speed-up
or at most a quadratic speed-up (e.g., Grover is optimal)

» NP-complete problems form a famous and important class of

hard computational problems: satisfiability, Traveling
Salesman Problem, protein folding,. . .

Conjectured: quantum computers can't efficiently solve them

Conclusion

v

Quantum mechanics is the best physical theory we have

v

Fundamentally different from classical physics:

superposition, interference, entanglement

v

Quantum algorithms use these non-classical effects to solve
some problems much faster

v

We saw 4 important examples:

. Shor’s factoring algorithm

Grover's search algorithm

. Ambainis’s collision-finding algorithm
HHL algorithm for linear systems

P ownR

Much more left to be discovered. ..

Phase estimation

» Suppose we can apply U and are given one of its eigenvectors
|v) as a quantum state. Goal: learn eigenvalue e
Suppose phase 8 = 0.0;...0y has ¢ bits of precision

2mijk
» Remember QFT: |j) — |xj) = Z e ot |k)

» Phase estimation algorithm:
1. Start with |O‘>\ v)

2. Apply H®¢ \F Z

ke{0,1}¢
3. Conditioned on 1st register, apply U to 2nd register:

\/» Z 27r10k‘ \/127 Z e27ri0k|k>‘v>

ke{0,1}¢ ke{0,1}¢

4. Inverse QFT on first register gives j = 62¢ = 6;...6,
» With O(1/¢) applications of U: e-error approximation of 6

