Quantum Algorithms Tutorial

Ronald de Wolf

Universiteit van Amsterdam

Post-quantum cryptography

- Quantum computers can break public-key cryptography that is based on assuming hardness of factoring, discrete logs, and a few other problems
- Post-quantum cryptography tries to design classical crypto schemes that cannot be broken efficiently by quantum algorithms
- Classical codemakers vs quantum codebreakers
- This tutorial:

> Get to know your enemy!

Quantum bits

- Richard Feynman, David Deutsch in early 1980s:

Harness quantum effects for useful computations!

- Classical bit is 0 or 1 ; quantum bit is superposition of 0 and 1 For example, can use an electron as qubit, with $0=$ "spin up" and $1=$ "spin down"
- 2 qubits is superposition of 4 basis states $(00,01,10,11)$ 3 qubits is superposition of 8 basis states ($000,001, \ldots$)

1000 qubits: superposition of 2^{1000} states

- Massive space for computation! Easier said than done. . .

A bit of math: states

- 1-qubit basis states: $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=\binom{\alpha_{0}}{\alpha_{1}} \in \mathbb{C}^{2}$

2-qubit basis state: $|10\rangle=|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$

- n-qubit state: $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \in \mathbb{C}^{2^{n}}$
- Axiom: measuring state $|\psi\rangle$ gives $|x\rangle$ with probability $\left|\alpha_{x}\right|^{2}$
- Hence $\sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1, \quad$ so $|\psi\rangle$ is a vector of length 1

A bit of math: operations

- Quantum operation maps quantum states to quantum states and is linear \Longrightarrow corresponds to unitary matrix
- Example 1-qubit gates:
$X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), T=\left(\begin{array}{rr}1 & 0 \\ 0 & e^{\pi i / 4}\end{array}\right)$
- More quantum: Hadamard gate $=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
$H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \quad H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
But $H \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2}} H|0\rangle+\frac{1}{\sqrt{2}} H|1\rangle=|0\rangle$
Interference!
- Controlled-NOT gate on 2 qubits: $|a, b\rangle \mapsto|a, a \oplus b\rangle$

Quantum circuits

- A classical Boolean circuit consists of AND, OR, and NOT gates on an n-bit register
- A quantum circuit consists of unitary quantum gates on an n-qubit register (allowing H, T, and CNOT gates suffices)

Example:

$$
|00\rangle \xrightarrow{H \otimes \mid} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

This circuit creates an EPR-pair: entanglement!

Recap: From classical to quantum computation

- bits
\longrightarrow qubits
- AND/OR/NOT gates \longrightarrow unitary quantum gates
- classical circuit $\quad \longrightarrow$ quantum circuit
- reading the output bit \longrightarrow measuring final state

Quantum mechanical computers

1. Start with all qubits in easily-preparable state (e.g. all $|0\rangle$)
2. Run a circuit that produces the right kind of interference: computational paths leading to correct output should interfere constructively, others should interfere destructively
3. Measurement of final state gives classical output

Two important questions:

1. Can we build such a computer?
2. What can it do?

This tutorial: 2nd question, focus on quantum algorithms

Quantum parallelism

- Suppose classical algorithm computes $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Convert this to quantum circuit $U:|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$
- We can now compute f "on all inputs simultaneously"!

$$
U\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

- This contains all 2^{n} function values!
- But observing gives only one random $|x\rangle|f(x)\rangle$

All other information will be lost

- More tricks needed for successful quantum computation Interference!

Deutsch-Jozsa problem

- Given: function $f:\{0,1\}^{n} \rightarrow\{0,1\}\left(2^{n}\right.$ bits), s.t.
(1) $f(x)=0$ for all x (constant),
or
(2) $f(x)=0$ for $\frac{1}{2} \cdot 2^{n}$ of the x 's (balanced)
- Question: is f constant or balanced?
- Classically: need at least $\frac{1}{2} \cdot 2^{n}+1$ steps ("queries" to f)
- Quantumly: $O(n)$ gates suffice, and only 1 query
- Query: application of unitary $O_{f}:|x, 0\rangle \mapsto|x, f(x)\rangle$
- More generally: $O_{f}:|x, b\rangle \mapsto|x, b \oplus f(x)\rangle(b \in\{0,1\})$
- NB using $|-\rangle=H|1\rangle$, we can get queried bit as a \pm-phase: $O_{f}|x\rangle|-\rangle=(-1)^{f(x)}|x\rangle|-\rangle$

Deutsch-Jozsa algorithm

- Starting state: $|\underbrace{0 \ldots 0}_{n}\rangle|1\rangle$
- After first Hadamards: $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|-\rangle$
- Make one query: $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle|-\rangle$
- Forget about the last qubit $|-\rangle$

Deutsch-Jozsa (continued)

- After second Hadamard:

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)} \frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle
$$

- $\alpha_{0 \ldots 0}=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}= \begin{cases}1 & \text { if constant } \\ 0 & \text { if balanced }\end{cases}$
- Measurement gives right answer with certainty
- Big quantum-classical separation: $O(n)$ vs $\Omega\left(2^{n}\right)$ steps
- But the problem is efficiently solvable by bounded-error classical algorithm (just query f at a few random x)

The meat of this tutorial: 4 quantum algorithms

1. Shor's factoring algorithm
2. Grover's search algorithm
3. Ambainis's collision-finding algorithm
4. HHL algorithm for linear systems

Factoring

- Given $N=p \cdot q$, compute the prime factors p and q
- Fundamental mathematical problem since Antiquity
- Fundamental computational problem on $\log N$ bits $15=3 \times 5$
$12140041=3413 \times 3557$
- Best known classical algorithms use time $2^{(\log N)^{\alpha}}$, where $\alpha=1 / 2$ or $1 / 3$
- Its assumed computational hardness is basis of public-key cryptography (RSA)
- A quantum computer can break this, using Shor's efficient quantum factoring algorithm!

Overview of Shor's algorithm

- Classical reduction: choose random $x \in\{2, \ldots, N-1\}$. It suffices to find period r of $f(a)=x^{a} \bmod N$
- Shor uses the quantum Fourier transform for period-finding

- Overall complexity: roughly $(\log N)^{2}$ elementary gates

Reduction to period-finding

- Pick a random integer $x \in\{2, \ldots, N-1\}$, s.t. $\operatorname{gcd}(x, N)=1$
- The sequence $x^{0}, x^{1}, x^{2}, x^{3}, \ldots \bmod N$ cycles:
has an unknown period $r\left(\min r>0\right.$ s.t. $\left.x^{r} \equiv 1 \bmod N\right)$
- With probability $\geq 1 / 4$ (over the choice of x):
r is even and $x^{r / 2} \pm 1 \not \equiv 0 \bmod N$
- Then:

$$
\begin{aligned}
x^{r}=\left(x^{r / 2}\right)^{2} & \equiv 1 \bmod N \Longleftrightarrow \\
\left(x^{r / 2}+1\right)\left(x^{r / 2}-1\right) & \equiv 0 \bmod N \Longleftrightarrow \\
\left(x^{r / 2}+1\right)\left(x^{r / 2}-1\right) & =k N \text { for some } k
\end{aligned}
$$

- $x^{r / 2}+1$ and $x^{r / 2}-1$ each share a factor with N
- This factor of N can be extracted using gcd-algorithm

Quantum Fourier transform

- Fourier basis (dimension q): $\left|\chi_{j}\right\rangle=\frac{1}{\sqrt{q}} \sum_{k=0}^{q-1} e^{\frac{2 \pi i j k}{q}}|k\rangle$

Such a state is unentangled $\left|\chi_{j_{0} j_{1} j_{2}}\right\rangle=$

$$
\frac{1}{\sqrt{8}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{2}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot j_{0} j_{1} j_{2}}|1\rangle\right)
$$

- Quantum Fourier Transform: $|j\rangle \mapsto\left|\chi_{j}\right\rangle$
- If $q=2^{\ell}$, then can implement this with $O\left(\ell^{2}\right)$ gates.

- For Shor: choose $q=2^{\ell}$ in $\left(N^{2}, 2 N^{2}\right]$

Easy case for the analysis: $r \mid q$

1. Apply QFT to 1 st register of $\underbrace{0 \ldots 0\rangle}_{\ell \text { qubits }} \underbrace{|0 \ldots 0\rangle}_{\lceil\log N \text { qubits }\rceil}$:

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|0\rangle
$$

2. Compute $f(a)=x^{a} \bmod N$ (by repeated squaring)

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle\left|x^{a} \bmod N\right\rangle
$$

3. Observing 2nd register gives $\left|x^{s} \bmod N\right\rangle($ random $s<r)$ 1st register collapses to superposition of

$$
|s\rangle,|r+s\rangle,|2 r+s\rangle, \ldots,|q-r+s\rangle
$$

Easy case: $r \mid q$ (continued)

Recall: 1st register is in superposition $\sum_{j=0}^{q / r-1}|j r+s\rangle$
4. Apply QFT once more:

$$
\sum_{j=0}^{q / r-1} \sum_{b=0}^{q-1} e^{2 \pi i \frac{(j r+s) b}{q}}|b\rangle=\sum_{b=0}^{q-1} e^{2 \pi i \frac{s b}{q}} \underbrace{\left(\sum_{j=0}^{q / r-1}\left(e^{2 \pi i \frac{r b}{q}}\right)^{j}\right)}_{\text {geometric sum }}|b\rangle
$$

Sum $\neq 0$ iff $e^{2 \pi i \frac{r b}{q}}=1$ iff $\frac{r b}{q}$ is an integer
Only the b that are multiples of $\frac{q}{r}$ have non-zero amplitude!

Easy case: $r \mid q$ (continued)

5. Observe 1st register: random multiple $b=c \frac{q}{r}, c \in[0, r)$:

$$
\frac{b}{q}=\frac{c}{r}
$$

- b and q are known; c and r are unknown
- c and r are coprime with probability $\geq 1 / \log \log r$
- Then: we find r by writing $\frac{b}{q}$ in lowest terms
- Since we can find r, we can find prime factors of N !

Hard case (r Xq) still works approximately: measurement gives
b s.t. $\frac{b}{q} \approx \frac{c}{r}$; we can find r with some extra number theory

Summary for Shor's algorithm

- Reduce factoring to finding the period r of modular exponentiation function $f(a)=x^{a} \bmod N$
- Use quantum Fourier transform to find a multiple of q / r, repeat a few times to find r
- Overall complexity:
- QFT takes $O(\log q)^{2}=O(\log N)^{2}$ elementary gates
- Modular exponentiation: $\approx(\log N)^{2} \log \log N$ gates; classical computation by repeated squaring (use Schönhage-Strassen algo for fast multiplication)
- Everything repeated $O(\log \log N)$ times
- Classical postprocessing takes $O(\log N)^{2}$ gates
- Roughly $(\log N)^{2}$ elementary gates in total

The search problem

- We want to search for some good item in an unordered N-element search space
- Model this as function $f:\{0,1\}^{n} \rightarrow\{0,1\}\left(N=2^{n}\right)$ $f(x)=1$ if x is a solution
- We can query f : $O_{f}:|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$
or $O_{f}:|x\rangle \mapsto(-1)^{f(x)}|x\rangle$
- Goal: find a solution
- Classically this takes $O(N)$ steps (queries to f)
- Grover's algorithm does it in $O(\sqrt{N})$ steps

Grover's algorithm

- Apply Grover iteration $\mathcal{G} k$ times on uniform starting state

- Idea: each iteration moves amplitude towards solutions

The good state and the bad state

- Suppose there are t solutions
- Define "good" state and "bad" state:

$$
|G\rangle=\frac{1}{\sqrt{t}} \sum_{x: f(x)=1}|x\rangle \quad|B\rangle=\frac{1}{\sqrt{N-t}} \sum_{x: f(x)=0}|x\rangle
$$

- Initial uniform state is $|U\rangle=\sin (\theta)|G\rangle+\cos (\theta)|B\rangle$ for $\theta=\arcsin (\sqrt{t / N})$
- All intermediate states will be in $\operatorname{span}\{|G\rangle,|B\rangle\}$
- Grover iteration is a rotation over angle 2θ
so after k iterations the state is

$$
\sin ((2 k+1) \theta)|G\rangle+\cos ((2 k+1) \theta)|B\rangle
$$

One Grover iteration: rotation by 2θ

$\mathcal{G}=H^{\otimes n} R H^{\otimes n} \cdot O_{f}$, where R reflects through $\left|0^{n}\right\rangle$
This \mathcal{G} is the product of two reflections:

1. O_{f} reflects through $|B\rangle$
2. $H^{\otimes n} R H^{\otimes n}$ reflects through $|U\rangle$

Starting state: \quad Reflect through $|B\rangle: \quad$ Reflect through $|U\rangle$:

How many iterations do we need?

- Success probability after k iterations:

$$
\sin ^{2}((2 k+1) \theta), \text { with } \theta=\arcsin (\sqrt{t / N}) \approx \sqrt{t / N}
$$

- If $k=\frac{\pi}{4 \theta}-\frac{1}{2}$, then success probability is $\sin ^{2}(\pi / 2)=1$
- Example: $t=N / 4$ solutions $\Rightarrow k=1$
- In general, round k to nearest integer (incurs small error)
- Query complexity is $k \approx \frac{\pi}{4} \sqrt{N / t}$

This is optimal for a quantum algorithm!

- Gate complexity is $O(\sqrt{N / t} \log N)$

Summary for Grover's algorithm

- Quantum computers can search any N-element space with $t=\varepsilon N$ solutions, in $O(\sqrt{N / t})=O(1 / \sqrt{\varepsilon})$ iterations

1. Set up uniform starting state $|U\rangle$
2. Repeat the following $O(1 / \sqrt{\varepsilon})$ times:
2.1 Reflect through $|B\rangle$ (costs 1 query)
2.2 Reflect through $|U\rangle(\operatorname{costs} O(\log N)$ gates)
3. Measure final state to obtain an index i

- If we don't know $\varepsilon=t / N$, we can try different guesses, still find a solution with expected number of $O(1 / \sqrt{\varepsilon})$ iterations
- The algorithm has a small error probability, but can be modified to error 0 if we know t exactly

Application: Speed up NP problems

- Given a propositional formula $f\left(x_{1}, \ldots, x_{n}\right)$

Computable in time poly(n)
Question: is f satisfiable?

- This is a typical NP-complete problem
- Search space of $N=2^{n}$ possibilities
- Classically: exhaustive search is the best we know. This takes about N steps
- Quantumly: Grover finds a satisfying assignment in $\sqrt{N} \cdot \operatorname{poly}(n)$ steps
- Because Grover is optimal, we believe that NP-hard problems cannot be efficiently computed by quantum algorithms

Classical random walks

- Explore a graph by moving to random neighbor in each step

- If G is d-regular and connected: normalized adjacency matrix has "spectral gap" $\delta \in(0,1)$. Starting from any vertex, $O(1 / \delta)$ random walk steps produce uniform distribution
- Suppose an ε-fraction of the vertices are "marked" and we want to find such a marked vertex. Simple classical algorithm:

1. Start at random vertex v (setup cost \mathbf{S})
2. Do the following $O(1 / \varepsilon)$ times:
2.1 Check if v is marked (checking cost \mathbf{C})
2.2 Rerandomize v by $O(1 / \delta)$ RW steps (step cost U)

This finds marked item w.h.p. Cost is $\mathbf{S}+\frac{1}{\varepsilon}\left(\mathbf{C}+\frac{1}{\delta} \mathbf{U}\right)$

Quantum walks

- Quantum walk: walk in superposition over vertices (edges)
- Analogy with Grover's algorithm:
$|G\rangle=$ uniform superposition over edges with marked endpoint
$|B\rangle=$ uniform superposition over all other edges
$|U\rangle=\sin (\theta)|G\rangle+\cos (\theta)|B\rangle, \theta=\arcsin (1 / \sqrt{\varepsilon})$

1. Setup starting state $|U\rangle$ (setup cost \mathbf{S})
2. Repeat the following $O(1 / \sqrt{\varepsilon})$ times:
2.1 Reflect through $|B\rangle$ (checking cost \mathbf{C})
2.2 Reflect through $|U\rangle$ (can be implemented using $1 / \sqrt{\delta} \mathrm{QW}$ steps, each at cost \mathbf{U})
3. Measure and check that resulting vertex is marked.

Correctness analogous to Grover. Cost is $\mathbf{S}+\frac{1}{\sqrt{\varepsilon}}\left(\mathbf{C}+\frac{1}{\sqrt{\delta}} \mathbf{U}\right)$

Example: Ambainis's algorithm ('03)

Suppose we want to find a collision in $h:[n] \rightarrow \mathbb{N}$

- $G=$ Johnson graph: the vertices are the sets $R \subseteq[n]$ of size r. Edge between sets R and R^{\prime} if they differ in 1 element
- Fraction of vertices of G that contain collision: $\varepsilon \geq(r / n)^{2}$
- Known: spectral gap is $\delta \approx 1 / r$
- With each vertex R, algorithm records $h(R)$; setup cost $\mathbf{S}=r$; checking cost $\mathbf{C}=0$; update cost $\mathbf{U}=O(1)$
- Total cost: $\mathbf{S}+\frac{1}{\sqrt{\varepsilon}}\left(\mathbf{C}+\frac{1}{\sqrt{\delta}} \mathbf{U}\right) \stackrel{r=n^{2 / 3}}{=} O\left(n^{2 / 3}\right)$
- Classically: $\Theta(n) f$-evaluations needed

If h is 2-to-1: run on random set of \sqrt{n} inputs (whp 1 collision) to get complexity $O\left(n^{1 / 3}\right)$
Classically: $\Theta(\sqrt{n}) f$-evaluations, by birthday paradox

HHL algorithm for "solving" large linear systems

- Solving large linear systems $A x=b$ is one of the most important problems in science and engineering.

Goal: given matrix A and vector b, find vector x

- Harrow-Hassidim-Lloyd'09: "solves" this problem exponentially faster by preparing state $|x\rangle$ IF system is well-behaved:

Assumptions
(1) state $|b\rangle$ easy to prepare;
(2) A is well-conditioned: $\lambda_{\text {max }} / \lambda_{\text {min }}$ not too big;
(3) unitary operation $e^{i A}$ is easy to apply (sparseness suffices)

How does the Harrow-Hassidim-Lloyd algorithm work?

- Input: Hermitian matrix $A \in \mathbb{R}^{N \times N}$ and vector $b \in \mathbb{R}^{N}$ Goal: approximately prepare $|x\rangle$, where $A x=b$
- Let $v_{1}, \ldots, v_{N}, \lambda_{1}, \ldots, \lambda_{N}$ be eigenvectors, eigenvalues of A
- HHL algorithm:

1. Prepare quantum state $|b\rangle=\sum_{i=1}^{N} \beta_{i}\left|v_{i}\right\rangle$

NB: applying A^{-1} corresponds to multiplying with λ_{i}^{-1}
2. Use eigenvalue estimation: $\sum_{i=1}^{N} \beta_{i}\left|v_{i}\right\rangle\left|\lambda_{i}\right\rangle$
3. Make new qubit $\sum_{i=1}^{N} \beta_{i}\left|v_{i}\right\rangle\left|\lambda_{i}\right\rangle\left(\lambda_{i}^{-1}|0\rangle+\sqrt{1-\lambda_{i}^{-2}}|1\rangle\right)$
4. Uncompute $\left|\lambda_{i}\right\rangle$ by inverting eigenvalue estimation
5. Amplify the $|0\rangle$-part to end with $\sum_{i=1}^{N} \beta_{i} \lambda_{i}^{-1}\left|v_{i}\right\rangle=|x\rangle$

What else can a quantum computer do?

- Similar to Shor: discrete logarithm, solve Pell's equation, compute properties of number fields, ...
- Similar to Grover: maximum-finding, approximate counting, shortest paths in graphs, minimum spanning trees, ...
- Similar to quantum walks: finding small subgraphs, matrix-product verification, junta-testing, backtracking, ...
- Similar to HHL: quantum machine learning, principal component analysis, recommendation systems, ...
- Efficiently simulating quantum-mechanical systems.

Could be very important for drug design, material sciences. . .

What quantum algorithms cannot do

- You can simulate every quantum algorithm with an exponentially slower classical computer

This implies that the set of computable problems doesn't change: Church-Turing thesis remains intact

- For many problems we can show that quantum computers give no significant speed-up or at most a quadratic speed-up (e.g., Grover is optimal)
- NP-complete problems form a famous and important class of hard computational problems: satisfiability, Traveling Salesman Problem, protein folding,...

Conjectured: quantum computers can't efficiently solve them

Conclusion

- Quantum mechanics is the best physical theory we have
- Fundamentally different from classical physics: superposition, interference, entanglement
- Quantum algorithms use these non-classical effects to solve some problems much faster
- We saw 4 important examples:

1. Shor's factoring algorithm
2. Grover's search algorithm
3. Ambainis's collision-finding algorithm
4. HHL algorithm for linear systems

Much more left to be discovered...

Phase estimation

- Suppose we can apply U and are given one of its eigenvectors $|v\rangle$ as a quantum state. Goal: learn eigenvalue $e^{2 \pi i \theta}$ Suppose phase $\theta=0 . \theta_{1} \ldots \theta_{\ell}$ has ℓ bits of precision
- Remember QFT: $|j\rangle \mapsto\left|\chi_{j}\right\rangle=\frac{1}{\sqrt{2^{\ell}}} \sum_{k=0}^{2^{\ell}-1} e^{\frac{2 \pi i j k}{2^{\ell}}}|k\rangle$
- Phase estimation algorithm:

1. Start with $\left|0^{\ell}\right\rangle|v\rangle$
2. Apply $H^{\otimes \ell}: \frac{1}{\sqrt{2^{\ell}}} \sum_{k \in\{0,1\}^{\ell}}|k\rangle|v\rangle$
3. Conditioned on 1 st register, apply U^{k} to 2 nd register:

$$
\frac{1}{\sqrt{2^{\ell}}} \sum_{k \in\{0,1\}^{\ell}}|k\rangle e^{2 \pi i \theta k}|v\rangle=\frac{1}{\sqrt{2^{\ell}}} \sum_{k \in\{0,1\}^{\ell}} e^{2 \pi i \theta k}|k\rangle|v\rangle
$$

4. Inverse QFT on first register gives $j=\theta 2^{\ell}=\theta_{1} \ldots \theta_{\ell}$

- With $O(1 / \varepsilon)$ applications of U : ε-error approximation of θ

