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Post-quantum cryptography

' Quantum computers can break public-key cryptography that
is based on assuming hardness of factoring, discrete logs, and
a few other problems

! Post-quantum cryptography tries to design classical crypto
schemes that cannot be broken elciently by quantum
algorithms

I Classicakcodemakers vguantum codebreakers

' This tutorial:
Get to know your enemy!



Quantum bits

! Richard Feynman,
David Deutsch
in early 1980s:

Harness quantum e"ects for useful computations!

I Classical bit is 0 od; quantum bitis superposition of 0 and

For example, can use an electron as qubit,
with 0 = Ospin upO and 1 = Ospin downO

! 2 qubits is superposition of basis states (00,01,10,11)
3 qubits is superposition d basis states (000,001, ...)

1000 qubits: superposition df'%% states

' Massive space for computatioriEasier said than done...



A bit of math: states

! 1-qubit basis statesj0) = ( (1) ) and|1) = < (1) >

! Qubit: superposition|0) + «1|1) = ( Zo > c 2
1
!

2-qubit basis state;10) = |1) ® |0) = ( 2 > ® ( é ) -

| n-qubit state: [¢)) = Y aylx) € C*
xe{0,1}n

| Axiom: measuringstate |) gives|x) with probability |c, |2

' Hence ) |a.>=1, so [¢)is a vector of length 1
x€{0,1}"

Or OO



A bit of math: operations

! Quantum operation maps quantum states to quantum states
and islinear == corresponds tainitary matrix

! Example 1-qubit gates:

/01 /1 0 /1 0
x=(10)2= (o 1) 7= (o o¥)

. 1 1 1
' More quantum: Hadamardgate = ﬁ ( 1 -1 >

HI0) = J5(10) + [1)),  HI1) = 5(10) - [1))
But H(10) + [1)) = L H|0) + LH1) = [0)
Interference!

! Controlled-NOTgate on 2 qubits:|a, b) — |a,a @ b)



Quantum circuits

I A classical Boolean circuit consists of
AND, OR, and NOT gates on am-bit register

' A quantum circuitconsists of

unitary quantum gateson an n-qubit register
(allowing H, T, and CNOT gates sulces)

Example:
input  |0)—— H —  bnal
qubits 0 ¢ state

100) 2 1(J00) + [10)) T3 L(/00) + [11))

This circuit creates an EPR-pairentanglement!



Recap: From classical to quantum computation

' bits — qubits
' AND/OR/NOT gates — unitary quantum gates
! classical circuit — quantumcircuit

! reading the output bit— measuringPnal state



Quantum mechanical computers

1. Start with all qubits in easily-preparable state (e.g. &)

2. Run a circuit that produces the right kind of interference
computational paths leading to correct output should interfere
constructively, others should interfere destructively

3. Measurement of bnal state gives classical output

Two important questions:

1. Can we build such a computer?
2. What can it do?

This tutorial: 2nd question, focus ogquantum algorithms



Quantum parallelism

! Suppose classical algorithm computés {0,1}" — {0,1}™
I Convert this to quantum circuitU : |x)|0) — [x)|f(x))
I We can now computeé Oon all inputssimultaneous|@!

1 1
u(@ > x>0>) = 7 2. WIfe)

x€{0,1}7 x€{0,1}7

! This contains all 2 function values!
' But observing gives only one randopw)|f(x))
All other information will be lost
I More tricks needed for successful quantum computation
Interference!



Deutsch-Jozsa problem

! Given: functionf : {0,1}" — {0,1} (2" bits) , s.t.
(1) f(x) =0 for all x (constan),
or
(2) f(x) =0 for 2" of the xOslfalanced

I Question: isf constant or balanced?

! Classically need at least; - 2" + 1 steps (OqueriesO tf)
' Quantumly O(n) gates sulce, and only 1 query

! Query: application of unitaryOr : |x,0) — |x, f(x))
! More generally:Os : |x, b) — |x,b® f(x)) (b€ {0,1})

' NB using|—) = H|1), we can get queried bit as &-phase:
Orx)|=) = (=1)"™]x)|-)



Deutsch-Jozsa algorithm

0)—{H
: o) : measure
0)—{H}
D—{H
! Starting state: [0...0)|1)
n
'\ After brst Hadamards —— >
\/7X€{0 1}n
| Make one query > (=) Mx)-)
XG{O 1}n

! Forget about the last qubit—)



Deutsch-Jozsa (continued)

! After secondHadamard

T > (0 f S (=)

XE{O 1}n ye{o,1}n

1 X 1 if constant
a0 = o > (-)f= { 0 i

if balanced
xe{0,1}n"

' Measuremengives right answer with certainty

! Big quantum-classical separatior®@(n) vs #(2") steps

' But the problem is elciently solvable by bounded-error
classical algorithijust query f at a few randomx)



The meat of this tutorial: 4 quantum algorithms

1. ShorOs factoring algorithm

2. GroverQOs search algorithm

3. AmbainisOs collision-bnding algorithm

4. HHL algorithm for linear systems



Factoring

I GivenN = p - g, compute the prime factorg and g
! Fundamentalmathematicalproblem since Antiquity

! Fundamentalcomputationalproblem on logV bits
15=3 x5
12140041= 3413 x 3557

I Best known classical algorithms use tim&°2V)* where
a=1/2o0r1/3

I Its assumeccomputational hardness is basis of
public-key cryptography{RSA)

' A quantum computer carbreakthis,
using ShorOs elcient quantum factoring algorithm



Overview of Shor’s algorithm

! Classical reductionchoose randonx € {2,..., N — 1}.
It sulces to bnd periodr of f(a) = x? mod N

' Shor uses thejuantum Fourier transfornfor period-Pnding

o 1
- | QFT QFT| : measure
O,
)———+1  —
: . measure
O)—— —

' Overall complexity: roughly (lo@/)? elementary gates



Reduction to period-finding

! Pick a random integex € {2,..., N — 1}, s.t. gcd(x, N)=1

! The sequence®, x', x%,x3,... mod N cycles:

has an unknowrperiodr (min r > 0 s.t. x" = 1 mod N)

! With probability > 1/4 (over the choice ok):
ris even andk’/2 + 1% 0 mod N
' Then:
x"=(x7?)2=1modN <—
(x2+1)(x"/2—-1) =0 mod N —
(x"/2+1)(x"/2 — 1) = kN for somek
! x'/2+1 and x'/2 — 1 each share a factor withV

I This factor of N can be extracted using gcd-algorithm



Quantum Fourier transform

a— 27'rlk
Fourier basigdimensiong): |x;) = Z v

k:
Such a state is unentangled;,;,;,) =

L(10)+ 27102 |1)) @(|0) + €207 1)) @(|0) + €270k 1))
Quantum Fourier Transformy;) — |x;)

If g = 2%, then can implement this withO(¢?) gates.

o)

1) —
Elss

|71
For Shor: choose = 2¢ in (N2, 2N?]

|72)



Easy case for the analysis: r|q

1. Apply QFT to 1st register of0...0) |0...0)
SN——

£ qubits [log N qubits]

[ay

Q0

1
Va3

2. Computef(a) = x? mod N (by repeated squaring)

|2)(0)

Q
Il
o

Q

=,
7 |a)|x? mod N)

o
I
o

3. Observing 2nd register giveés® mod N) (randoms < r)
1st register collapses to superposition of

|s>,]r+s),|2r+s>,...,|q—r+s>



Easy case: r|g (continued)

q/r-1
Recall: 1st register is in superpositiod _ |jr + )
=0
4. Apply QFT once more:
q/r—1q-1 . g-1 q/r—1 .
- (jr+s)b jsb jre\J
e27rl a |b> - eZTr a Z (627T q) ‘b)
i=0 b=0 b=0 =0

geometric sum

. ith ., b . .
sum#0 i* "7 =1 i* 2 is an integer
q

Only the b that are multiples ofd have non-zero amplitude!
r



Easy case: r|g (continued)

5. Observe 1st registemandom multipleb = cg, ce[0,r):

b_c
:

' b and g are known ¢ and r are unknown

! ¢ and r are coprime with probability> 1/ log logr
' Then: we bndr by writing s in lowest terms

! Since we can bPnd, we can bnd prime factors of !

Hard case £ /[q) still works approximately: measurement gives
b ,

bst — = E; we can bndr with some extra number theory
q r



Summary for Shor’s algorithm

! Reduce factoring to Pnding thperiod r of modular
exponentiation functionf(a) = x? mod N

' Usequantum Fourier transformto bnd a multiple ofg/r,
repeat a few times to pnd

' Overall complexity:

» QFT takes O(log q)?> = O(log N)? elementary gates

» Modular exponentiation:= (log )2 log logN gates
classical computation by repeated squaring
(use Schenhage-Strassen algo for fast multiplication)

» Everything repeated)(log log /) times
» Classical postprocessing také¥log N)? gates

' Roughly(log N)? elementary gates in total



The search problem

' We want to search for some good item in
an unordered/N-element search space
! Model this as functionf : {0,1}" — {0,1} (N =2")
f(x)=1if xis a solution
! We canqueryf:
Or : [x)[0) = |x)|f(x))
or
Or : Ix) = (1) M)
! Goal: Pnd a solution
I Classically this take®©(N) steps(queries tof)

' GroverOs algorithm does it @(v/N) steps



Grover’s algorithm

' Apply Grover iterationg k times on uniform starting state

0—{A) _
nq |0) @ g g e G — measure
0)—H] —

k

! |dea: each iteration moves amplitude towards solutions



The good state and the bad state

Suppose there are solutions
Debne OgoodO state and ObadO state:

1 1
€= > W = s >

t x:f(x)=1 x:f(x)=0

Initial uniform state is|U) = sin(0)|G) + cos(6)|B)
for 6 = arcsin(y/t/N)

All intermediate states will be in spdhG), |B)}
Grover iteration is aotation over angle 2

so after k iterations the state is

sin((2k + 1) 0)|G) + cos((2k + 1) 6)|B)



One Grover iteration: rotation by 26

G = H®"RH®" . Of, whereR reRRects through0”)
This G is the product of two ref3ections

1. Of relRects through B)
2. H®"RH®" reRects through U)

Starting state: RefRect throughB): ReRect through U):
G) |G) G)

G|u)
f\U> V) /2 T|U>
B) 1B) B)

Or|U)



How many iterations do we need?

I Success probability aftek iterations:

Sir?((2k + 1) §), with 6 = arcsin(y/t/N) ~ \/t/N

Plf k= ;; > then success probability is Sifrr/2) =

! Example:t = N/4 solutions= k =1
' In general, roundck to nearest integer (incurs small error)
' Query complexity isk ~ % N/t
This is optimal for a quantum algorithm!
| Gate complexity isO(y/N/t log N)



Summary for Grover’s algorithm

' Quantum computers can search amy-element space with
t = eN solutions, inO(,/N/t) = O(1/./¢) iterations

1. Set up uniform starting statg U)
2. Repeat the followingD(1/+/¢) times:

2.1 Reflect through |B) (costs 1 query)
2.2 Reflect through |U) (costs O(log N) gates)

3. Measure bnal state to obtain an indéx

' If we donOt know = t/N, we can try di"erent guesses, still
Pnd a solution with expected number 6f(1/./¢) iterations

! The algorithm has a small error probabiljty
but can be modibed to error & we knowt exactly



Application: Speed up NP problems

Given a propositional formulé(x, . . ., x,)
Computable in time polyg)

Question: isf satisbable?

This is a typical NP-complete problem

Search space oW = 2" possibilities

Classically: exhaustive search is the best we know.

This takes aboutN steps

Quantumly: Grover bPnds a satisfying assignment in

VN - poly(n) steps

Because Grover is optimalye believe that NP-hard problems
cannot be elciently computed by quantum algorithms



Classical random walks R
Aé;{/\p / \\\\
' Explore a graph by moving to L \/Q
random neighbor in each step k\v’// T

' If G is d-regular and connected: normalized adjacency matrix
has Ospectral gapc (0, 1). Starting from any vertex,
0O(1/6) random walk steps produce uniform distribution

| Suppose ar-fraction of the vertices are OmarkedO and we
want to bnd such a marked verteXSimple classical algorithm:

1. Start at random vertexv (setup cost S)
2. Do the followingO(1/¢) times:
2.1 Check if v is marked (checking cost C)
2.2 Rerandomize v by O(1/! ) RW steps (step cost U)

This bnds marked item w.h.p. Cost isS + % (C + ;u)



Quantum walks

Quantum walk walk in superposition over vertices (edges)

Analogy with GroverOs algorithm:

|G) = uniform superposition over edges with marked endpoint
|B) = uniform superposition over all other edges
|U) = sin(@)|G) + cos(0)|B), 0 = arcsin(1/+/c)

1. Setup starting state|U) (setup cost S)
2. Repeat the followingO(1/+/c) times:

2.1 Reflect through |B) (checking cost C)
2.2 Reflect through |U)

(can be implemented using 1/ /I QW steps, each at cost U)
3. Measure and check that resulting vertex is marked.

; 1 1
Correctness analogous to Grove€ost isS + G (C + %U)



Example: Ambainis’s algorithm (’03)

Suppose we want to bPnd a collision fn: [n] —» N

G =Johnson graph the vertices are the set® C [n] of sizer.
Edge between set® and R’ if they di"er in 1 element

Fraction of vertices ofG that contain collision:c > (r/n)?
Known: spectral gap i$ ~ 1/r

With each vertexR, algorithm recordsh(R);

setup costS = r; checking cosiC = 0; update costU = O(1)

1 1 _,2/3
Total cost: S+ — (C+ —U ) £ o(n?/3
Ve ( Vs ) ()

Classically: $() f-evaluations needed

If his 2-to-1: run on random set of/n inputs (whp 1 collision) to
get complexityO(n'/3)

Classically: $(/n) f-evaluations, by birthday paradox



HHL algorithm for *“solving™ large linear systems

Solving large linear system&x = b is one of the most
important problems in science and engineering.

Goal: given matrixA and vectorb, bnd vectorx

Harrow-Hassidim-Lloyd®09: OsolvesO this problem
exponentially fasteby preparing statex) |F

system is well-behaved

Assumptions

(1) state |b) easy to prepare;

(2) Ais well-conditioned:\ ,.x/Amin NOt too big;

(3) unitary operatione” is easy to apply (sparseness sulces)



How does the Harrow-Hassidim-Lloyd algorithm work?

' Input: Hermitian matrix A € RV*N and vectorb € RV
Goal: approximately preparéx), whereAx = b

' Letvy,...,vn, A1, ..., Ay be eigenvectors, eigenvalues Af
! HHL algorithm:

1. Prepare quantum stateb) = Z,N:l Bilvi)
NB: applyingA~* corresponds to multiplying with; *

2. Useeigenvalue estimaticmZ,{V:1 Bilvi)| i)

3. Make new qubity"" | 8;vi)|\) ()\i_l|0> +4/1— /\,._2|1>>
4. Uncompute|);) by inverting eigenvalue estimation

5. Amplify the |0)-part to end with % | BiA7v,) = |x)



What else can a quantum computer do?

! Similar to Shor:discrete logarithm, solve PellOs equation,
compute properties of number pelds, ...

! Similar to Grover:maximum-bnding, approximate counting,
shortest paths in graphs, minimum spanning trees, ...

! Similar to quantum walks:Pnding small subgraphs,
matrix-product veribcation, junta-testing, backtracking, ...

' Similar to HHL: quantum machine learning, principal
component analysis, recommendation systems, ...

' Elciently simulating quantum-mechanical systems
Could be very important for drug design, material sciences. ..



What quantum algorithms cannotdo

' You can simulate every quantum algorithm with an
exponentially slower classical computer

This implies that the set ofcomputable problems doesnOt
change: Church-Turing thesis remains intact

' For many problems we can show that quantum computers
give no signibcant speed-up
or at most a quadratic speed-up (e.g., Grover is optimal)

! NP-complete problems form a famous and important class of

hard computational problems: satispability, Traveling
Salesman Problem, protein folding,. ..

Conjectured: quantum computers canOt elciently solve them



Conclusion

I Quantum mechanics is thbest physical theory we have

' Fundamentally di"erent from classical physics:
superposition, interference, entanglement

! Quantum algorithmsuse these non-classical e"ects to solve
some problems much faster

' We saw 4 important examples:

1. ShorOs factoring algorithm

2. GroverOs search algorithm

3. AmbainisOs collision-bPnding algorithm
4. HHL algorithm for linear systems

Much more left to be discovered. ..



Phase estimation

! Suppose we can apply and are given one of its eigenvectors
|v) as a quantum state Goal: learn eigenvalue?™"*
Suppose phasé=0.0;...6, has/ bits of precision

2mijk

20 |k

' Remember QFT{j) — |x;) = E e
! Phase estimation algorithm:

1. Start with [0°)|v)

1
2. Apply H®:: N > Ik
ke{0,1}¢

3. Conditioned on 1st register, apply* to 2nd register:

\/» Z 27r16k‘ \/127 Z e27ri0k|k>‘v>

ke{o,1}* ke{0,1}¢

4. Inverse QFTon brst register giveg= 62 = 6,...6,
' With O(1/¢) applications ofU: e-error approximation of)



