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Part I: How to make software secure
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room

◮ This talk: don’t consider “local” side-channel attacks
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Problem No. 1

if(secret)

{

do_A();

}

else

{

do_B();

}
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Examples

◮ Square-and-multiply (or double-and-add):

“if s is one: multiply”
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Examples

◮ Square-and-multiply (or double-and-add):

“if s is one: multiply”

◮ Modular reduction:

“if a > q: subtract q from a”

◮ Rejection sampling:

“if a < q: accept a”

◮ Byte-array (tag) comparison:

“if a[i] 6= b[i]: return”

◮ Sorting and permuting:

“if a < b: branch into subroutine”
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Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if
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Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster
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Problem No. 2

table[secret]
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache
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◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ Crypto continues, loads from table
again

◮ Attacker loads his data:
◮ Fast: cache hit (crypto did not just

load from this line)
◮ Slow: cache miss (crypto just loaded

from this line)
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The general case

Loads from and stores to addresses that depend on secret data

leak secret data.
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“Countermeasure”
◮ Observation: This simple cache-timing attack does not reveal the

secret address, only the cache line
◮ Idea: Lookups within one cache line should be safe
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“Countermeasure”
◮ Observation: This simple cache-timing attack does not reveal the

secret address, only the cache line
◮ Idea: Lookups within one cache line should be safe. . . or are they?
◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?

No!”
◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors

which leak low address bits”
◮ Reasons:

◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime
◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access

within one cache line
◮ Yarom, Genkin, Heninger: CacheBleed attack “is able to recover

both 2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f
running on Intel Sandy Bridge processors after observing only 16,000
secret-key operations (decryption, signatures).”
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos);

cmov(&r, &table[i], b); // See "eliminating branches"

}

return r;

}
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uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos); /* DON’T! Compiler may do funny things! */

cmov(&r, &table[i], b);
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = isequal(i, pos);

cmov(&r, &table[i], b);

}

return r;

}
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Countermeasure, part 2

int isequal(uint32_t a, uint32_t b)

{

size_t i; uint32_t r = 0;

unsigned char *ta = (unsigned char *)&a;

unsigned char *tb = (unsigned char *)&b;

for(i=0;i<sizeof(uint32_t);i++)

{

r |= (ta[i] ^ tb[i]);

}

r = (-r) >> 31;

return (int)(1-r);

}
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Part II: How to make software fast
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“The multicore revolution”

◮ Until early years 2000 each new processor generation had higher
clock speeds

◮ Nowadays: increase performance by number of cores:
◮ My laptop has 2 phyiscal (and 4 virtual) cores
◮ Smartphones typically have 2 or 4 cores
◮ Servers have 4, 8, 16,. . . cores
◮ Special-purpose hardware (e.g., GPUs) often comes with many more

cores

◮ Consequence: “The free lunch is over” (Herb Sutter, 2005)
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◮ Nowadays: increase performance by number of cores:
◮ My laptop has 2 phyiscal (and 4 virtual) cores
◮ Smartphones typically have 2 or 4 cores
◮ Servers have 4, 8, 16,. . . cores
◮ Special-purpose hardware (e.g., GPUs) often comes with many more

cores

◮ Consequence: “The free lunch is over” (Herb Sutter, 2005)

“As a result, system designers and software engineers can no longer rely
on increasing clock speed to hide software bloat. Instead, they must
somehow learn to make effective use of increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007
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Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

◮ > 50 RSA-4096 signatures per second

◮ > 8000 RSA-4096 signature verifications per second

◮ > 28000 Ed25519 signatures per second

◮ > 9000 Ed25519 signature verifications per second
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◮ > 8000 RSA-4096 signature verifications per second

◮ > 28000 Ed25519 signatures per second

◮ > 9000 Ed25519 signature verifications per second

Post-quantum crypto is fast

◮ > 3900 “lattisigns512” signatures per second

◮ > 45000 “lattisigns512” verifications per second

◮ > 38000 rainbow5640 signatures per second

◮ > 57000 rainbow5640 verifications per second

◮ If you perform only one crypto operation, you don’t care

◮ Many crypto operations are trivially parallel on multiple cores
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Pipelined and multiscalar processors

◮ Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register
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Pipelined and multiscalar processors

◮ Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

◮ Pipelined execution: overlap processing of independent instructions
(e.g., while one instruction is in step 2, the next one can do step 1
etc.)

◮ Superscalar execution: duplicate units and process multiple
instructions in the same stage

◮ Crucial to make use of these concepts: instruction-level parallelism

◮ To some extent, compilers will help here
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Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

Something with implementations 16



Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .

Something with implementations 16



Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .

◮ Need to interleave data items (e.g., 32-bit integers) in memory

◮ Compilers will not help with vectorization

Something with implementations 16



Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .

◮ Need to interleave data items (e.g., 32-bit integers) in memory

◮ Compilers will not really help with vectorization

Something with implementations 16



Why would you care?

◮ Consider the Intel Nehalem processor

Something with implementations 17



Why would you care?

◮ Consider the Intel Nehalem processor
◮ 32-bit load throughput: 1 per cycle
◮ 32-bit add throughput: 3 per cycle
◮ 32-bit store throughput: 1 per cycle

Something with implementations 17



Why would you care?

◮ Consider the Intel Nehalem processor
◮ 32-bit load throughput: 1 per cycle
◮ 32-bit add throughput: 3 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 128-bit load throughput: 1 per cycle
◮ 4× 32-bit add throughput: 2 per cycle
◮ 128-bit store throughput: 1 per cycle

Something with implementations 17



Why would you care?

◮ Consider the Intel Nehalem processor
◮ 32-bit load throughput: 1 per cycle
◮ 32-bit add throughput: 3 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 128-bit load throughput: 1 per cycle
◮ 4× 32-bit add throughput: 2 per cycle
◮ 128-bit store throughput: 1 per cycle

◮ Vector instructions are almost as fast as scalar instructions but

do 4× the work

Something with implementations 17



Why would you care?

◮ Consider the Intel Nehalem processor
◮ 32-bit load throughput: 1 per cycle
◮ 32-bit add throughput: 3 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 128-bit load throughput: 1 per cycle
◮ 4× 32-bit add throughput: 2 per cycle
◮ 128-bit store throughput: 1 per cycle

◮ Vector instructions are almost as fast as scalar instructions but

do 4× the work

◮ Situation on other architectures/microarchitectures is similar
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Why would you care? (Part II)

◮ Data-dependent branches are expensive in SIMD

◮ Variably indexed loads (lookups) into vectors are expensive

◮ Need to rewrite algorithms to eliminate branches and lookups
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Why would you care? (Part II)

◮ Data-dependent branches are expensive in SIMD

◮ Variably indexed loads (lookups) into vectors are expensive

◮ Need to rewrite algorithms to eliminate branches and lookups

◮ Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

◮ Strong synergies between speeding up code with vector instructions
and protecting code!
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Example: butterflies
◮ Recall the NTT in NewHope
◮ Polynomials are represented as uint32_t aa[1024]
◮ Inside NTT load into vectors of 4 double-precision floats
◮ Perform 4 parallel butterflies on vx0 and vx1:

vx0 = _mm256_cvtepi32_pd (*(__m128i*) aa);

vx1 = _mm256_cvtepi32_pd (*(__m128i*) (aa+offset));

vt = _mm256_add_pd(vx0, vx1);

vx1 = _mm256_sub_pd(vx1, vx0);

vx1 = _mm256_mul_pd(vx1, vomega);

// reduce

vc = _mm256_mul_pd(vx1, vqinv);

vc = _mm256_round_pd(vc,0x09);

vc = _mm256_mul_pd(vc, vq);

vx1 = _mm256_sub_pd(vx1, vc);

sv = _mm256_cvtpd_epi32(vx0);

_mm_store_si128((__m128i *)aa,sv);

sv = _mm256_cvtpd_epi32(vt)

_mm_store_si128((__m128i *)(aa+4),sv);
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Take-home message

◮ Never branch on secret data

◮ Never access memory at secret addresses

◮ Vectorize, vectorize, vectorize!
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Exercise

◮ Download https://cryptojedi.org/mvmul.tar.bz2

◮ Unpack and cd: tar xjvf mvmul.tar.bz2 && cd mvmul

◮ Implement fast version of matrix-vector multiplication (mvmul_fast)
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Exercise

◮ Download https://cryptojedi.org/mvmul.tar.bz2

◮ Unpack and cd: tar xjvf mvmul.tar.bz2 && cd mvmul

◮ Implement fast version of matrix-vector multiplication (mvmul_fast)

◮ Program will test against (slow) reference implementation

◮ Program will then benchmark both functions.
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Exercise

◮ Download https://cryptojedi.org/mvmul.tar.bz2

◮ Unpack and cd: tar xjvf mvmul.tar.bz2 && cd mvmul

◮ Implement fast version of matrix-vector multiplication (mvmul_fast)

◮ Program will test against (slow) reference implementation

◮ Program will then benchmark both functions.

◮ Possibly helpful:
◮ https://software.intel.com/sites/landingpage/

IntrinsicsGuide/
◮ http://agner.org/optimize/instruction_tables.pdf

Something with implementations 21

https://cryptojedi.org/mvmul.tar.bz2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://agner.org/optimize/instruction_tables.pdf

