
Lattice-based cryptography – Episode IV

A new hope

Peter Schwabe
Joint work with Erdem Alkim, Léo Ducas, and Thomas Pöppelmann
peter@cryptojedi.org
https://cryptojedi.org

June 23, 2017

mailto:peter@cryptojedi.org
https://cryptojedi.org


“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

1

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange),
an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/

1

https://www.isara.com/isara-radiate/


“The deployed algorithm is a variant of “New Hope”, a quantum-resistant
cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

1

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html


A bit of (R)LWE history

• Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

• Regev, 2005: Introduce LWE-based encryption

• Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

• Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

• Peikert, 2014: Improved RLWE-based key exchange

• Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert’s key exchange in TLS:

• Alkim, Ducas, Pöppelmann, Schwabe, Aug. 2016: NewHope

• Alkim, Ducas, Pöppelmann, Schwabe, Dec. 2016: NewHope-Simple

2



Ring-Learning-with-errors (RLWE)

• Let Rq = Zq[X ]/(X n + 1)

• Let χ be an error distribution on Rq

• Let s ∈ Rq be secret

• Attacker is given pairs (a, as + e) with
• a uniformly random from Rq

• e sampled from χ

• Task for the attacker: find s

• Common choice for χ: discrete Gaussian

• Common optimization for protocols: fix a

3



Ring-Learning-with-errors (RLWE)

• Let Rq = Zq[X ]/(X n + 1)

• Let χ be an error distribution on Rq

• Let s ∈ Rq be secret

• Attacker is given pairs (a, as + e) with
• a uniformly random from Rq

• e sampled from χ

• Task for the attacker: find s

• Common choice for χ: discrete Gaussian

• Common optimization for protocols: fix a

3



RLWE-based Encryption, KEM, KEX

Alice (server) Bob (client)

s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′

u←−−−−

Alice has v = us = ass′ + e′s

Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• v and v′ are approximately the same

4



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e
(b

,seed

)−−−−−→

a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u

,c

)←−−−

c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u

,c

)←−−−

c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′, e′′ $← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′, e′′ $← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u,c)←−−− c←v + k

k′←c− v′

µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′, e′′ $← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

5



NewHope-Simple key exchange (simplified)

Alice Bob

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′, e′′ $← χ

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

k
$← {0, 1}n

k←Encode(k)

v′←us
(u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)

µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a) 5



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Against all authority

• Standard approach to choosing a:

“Let a be a uniformly random. . . ”

• Standard real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope(-Simple): Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• Must not reuse keys/noise!

6



Isn’t SHAKE slow?

• SHAKE-128 is slower than, e.g., AES-NI, Salsa20/ChaCha20,
Blake2X,. . . in software

• First versions of NewHope used Chacha20 to generate a

• Gueron, Schlieker, 2016: NewHope becomes faster if we use AES-NI
instead of SHAKE-128

• Google actually used Gueron-Schlieker version

• Problem in modelling:
• PRG is not the right building block
• PRG is secure only for secret input
• Could “zoom into” ChaCha20 or AES and argue security

• Problem in practice:
• AES is nasty in software, real advantage only with hardware AES
• ChaCha20 is in TLS, but not that thoroughly analyzed
• Blake2X: Also not much cryptanalysis
• Salsa20: Better analysis, no “NIST approval”

7



Isn’t SHAKE slow?

• SHAKE-128 is slower than, e.g., AES-NI, Salsa20/ChaCha20,
Blake2X,. . . in software

• First versions of NewHope used Chacha20 to generate a

• Gueron, Schlieker, 2016: NewHope becomes faster if we use AES-NI
instead of SHAKE-128

• Google actually used Gueron-Schlieker version
• Problem in modelling:

• PRG is not the right building block
• PRG is secure only for secret input
• Could “zoom into” ChaCha20 or AES and argue security

• Problem in practice:
• AES is nasty in software, real advantage only with hardware AES
• ChaCha20 is in TLS, but not that thoroughly analyzed
• Blake2X: Also not much cryptanalysis
• Salsa20: Better analysis, no “NIST approval”

7



Isn’t SHAKE slow?

• SHAKE-128 is slower than, e.g., AES-NI, Salsa20/ChaCha20,
Blake2X,. . . in software

• First versions of NewHope used Chacha20 to generate a

• Gueron, Schlieker, 2016: NewHope becomes faster if we use AES-NI
instead of SHAKE-128

• Google actually used Gueron-Schlieker version
• Problem in modelling:

• PRG is not the right building block
• PRG is secure only for secret input
• Could “zoom into” ChaCha20 or AES and argue security

• Problem in practice:
• AES is nasty in software, real advantage only with hardware AES
• ChaCha20 is in TLS, but not that thoroughly analyzed
• Blake2X: Also not much cryptanalysis
• Salsa20: Better analysis, no “NIST approval”

7



Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0
• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−1/4q, 1/4q]): set bit to zero
• Closer to ±q/2: set bit to one

• NewHope-Simple: map n/4 bits to n coefficients

• Set 4 coefficients to 0 or to q/2

• Decode: map coeffs into [−q/2, q/2], sum up 4 absolute values
• Closer to 0 (i.e., in [0, q]): set bit to zero
• Closer to ±2q: set bit to one

• First proposed by Pöppelmann and Güneysu in 2013.

8



Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0
• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−1/4q, 1/4q]): set bit to zero
• Closer to ±q/2: set bit to one

• NewHope-Simple: map n/4 bits to n coefficients

• Set 4 coefficients to 0 or to q/2

• Decode: map coeffs into [−q/2, q/2], sum up 4 absolute values
• Closer to 0 (i.e., in [0, q]): set bit to zero
• Closer to ±2q: set bit to one

• First proposed by Pöppelmann and Güneysu in 2013.

8



Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0
• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−1/4q, 1/4q]): set bit to zero
• Closer to ±q/2: set bit to one

• NewHope-Simple: map n/4 bits to n coefficients

• Set 4 coefficients to 0 or to q/2

• Decode: map coeffs into [−q/2, q/2], sum up 4 absolute values
• Closer to 0 (i.e., in [0, q]): set bit to zero
• Closer to ±2q: set bit to one

• First proposed by Pöppelmann and Güneysu in 2013.

8



Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0
• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−1/4q, 1/4q]): set bit to zero
• Closer to ±q/2: set bit to one

• NewHope-Simple: map n/4 bits to n coefficients

• Set 4 coefficients to 0 or to q/2

• Decode: map coeffs into [−q/2, q/2], sum up 4 absolute values
• Closer to 0 (i.e., in [0, q]): set bit to zero
• Closer to ±2q: set bit to one

• First proposed by Pöppelmann and Güneysu in 2013.

8



Reducing the size of c

• Remember that Bob sends c = v + k

• Alice recovers k′ = c− v′ ≈ k

• Information about k sits in high bits of c coefficients

• Noise sits in low bits of c coefficients

• Idea: Don’t transmit low bits

• This introduces additional (deterministic, uniform) noise

• In NewHope-Simple compress coefficients to 3 bits:

c̄i←d(ci · 8)/qc mod 8

• Recover c ′i ≈ ci on the receiver side:

c ′i←d(c̄i · q)/8c

• Technique known at least since 2009 (Peikert), used in various other
protocols

9



Reducing the size of c

• Remember that Bob sends c = v + k

• Alice recovers k′ = c− v′ ≈ k

• Information about k sits in high bits of c coefficients

• Noise sits in low bits of c coefficients

• Idea: Don’t transmit low bits

• This introduces additional (deterministic, uniform) noise

• In NewHope-Simple compress coefficients to 3 bits:

c̄i←d(ci · 8)/qc mod 8

• Recover c ′i ≈ ci on the receiver side:

c ′i←d(c̄i · q)/8c

• Technique known at least since 2009 (Peikert), used in various other
protocols

9



Reducing the size of c

• Remember that Bob sends c = v + k

• Alice recovers k′ = c− v′ ≈ k

• Information about k sits in high bits of c coefficients

• Noise sits in low bits of c coefficients

• Idea: Don’t transmit low bits

• This introduces additional (deterministic, uniform) noise

• In NewHope-Simple compress coefficients to 3 bits:

c̄i←d(ci · 8)/qc mod 8

• Recover c ′i ≈ ci on the receiver side:

c ′i←d(c̄i · q)/8c

• Technique known at least since 2009 (Peikert), used in various other
protocols

9



Reducing the size of c

• Remember that Bob sends c = v + k

• Alice recovers k′ = c− v′ ≈ k

• Information about k sits in high bits of c coefficients

• Noise sits in low bits of c coefficients

• Idea: Don’t transmit low bits

• This introduces additional (deterministic, uniform) noise

• In NewHope-Simple compress coefficients to 3 bits:

c̄i←d(ci · 8)/qc mod 8

• Recover c ′i ≈ ci on the receiver side:

c ′i←d(c̄i · q)/8c

• Technique known at least since 2009 (Peikert), used in various other
protocols

9



Parameter choices

BCNS key exchange

• Starting point: Bos, Costello, Naehrig, Stebila 2015:

• n = 1024, q = 232 − 1

• Error distribution: discrete Gaussian

• Claim: 128-bit pre-quantum security

NewHope(-Simple) key exchange

• n = 1024, q = 12289 (14 bits)

• Error distribution: centered binomial:
• Sample uniformly random k-bit integers a and b

• Output HW (a)− HW (b) (HW = Hamming weight)
• In NewHope we use k = 16

• Claim: � 128-bit post-quantum security

10



Parameter choices

BCNS key exchange

• Starting point: Bos, Costello, Naehrig, Stebila 2015:

• n = 1024, q = 232 − 1

• Error distribution: discrete Gaussian

• Claim: 128-bit pre-quantum security

NewHope(-Simple) key exchange

• n = 1024, q = 12289 (14 bits)

• Error distribution: centered binomial:
• Sample uniformly random k-bit integers a and b

• Output HW (a)− HW (b) (HW = Hamming weight)
• In NewHope we use k = 16

• Claim: � 128-bit post-quantum security

10



Post-quantum security

• Consider RLWE instance as LWE instance

• Attack using BKZ

• BKZ uses SVP oracle in smaller dimension

• Consider only the cost of one call to that oracle
(“core-SVP hardness”)

• Consider quantum sieve as SVP oracle
• Best-known quantum cost (BKC): 20.265n

• Best-plausible quantum cost (BPC): 20.2075n

• Obtain lower bounds on the bit security:

Known Classical Known Quantum Best Plausible

BCNS 86 78 61

NewHope 281 255 199

11



Post-quantum security

• Consider RLWE instance as LWE instance

• Attack using BKZ

• BKZ uses SVP oracle in smaller dimension

• Consider only the cost of one call to that oracle
(“core-SVP hardness”)

• Consider quantum sieve as SVP oracle
• Best-known quantum cost (BKC): 20.265n

• Best-plausible quantum cost (BPC): 20.2075n

• Obtain lower bounds on the bit security:

Known Classical Known Quantum Best Plausible

BCNS 86 78 61

NewHope 281 255 199

11



Post-quantum security

• Consider RLWE instance as LWE instance

• Attack using BKZ

• BKZ uses SVP oracle in smaller dimension

• Consider only the cost of one call to that oracle
(“core-SVP hardness”)

• Consider quantum sieve as SVP oracle
• Best-known quantum cost (BKC): 20.265n

• Best-plausible quantum cost (BPC): 20.2075n

• Obtain lower bounds on the bit security:

Known Classical Known Quantum Best Plausible

BCNS 86 78 61

NewHope 281 255 199

11



Polynomial multiplication

• Most costly arithmetic: multiply in Rq

• Choose q s.t. 2n | (q − 1)

• Use fast negacyclic number-theoretic transform (NTT)

• Compute r = ab as r = NTT−1(NTT(a) ◦ NTT(b))

• NTT computation: n
2 · log(n) “butterfly operations”

• Each butterfly: 1 addition, 1 subtraction, 1 multiplication by
constant

• NTT transforms uniform randomness to uniform randomness

• Idea: Assume that a is directly sampled in NTT domain

• Further optimization: send messages in NTT domain

• Save two NTT computations

12



Polynomial multiplication

• Most costly arithmetic: multiply in Rq

• Choose q s.t. 2n | (q − 1)

• Use fast negacyclic number-theoretic transform (NTT)

• Compute r = ab as r = NTT−1(NTT(a) ◦ NTT(b))

• NTT computation: n
2 · log(n) “butterfly operations”

• Each butterfly: 1 addition, 1 subtraction, 1 multiplication by
constant

• NTT transforms uniform randomness to uniform randomness

• Idea: Assume that a is directly sampled in NTT domain

• Further optimization: send messages in NTT domain

• Save two NTT computations

12



Polynomial multiplication

• Most costly arithmetic: multiply in Rq

• Choose q s.t. 2n | (q − 1)

• Use fast negacyclic number-theoretic transform (NTT)

• Compute r = ab as r = NTT−1(NTT(a) ◦ NTT(b))

• NTT computation: n
2 · log(n) “butterfly operations”

• Each butterfly: 1 addition, 1 subtraction, 1 multiplication by
constant

• NTT transforms uniform randomness to uniform randomness

• Idea: Assume that a is directly sampled in NTT domain

• Further optimization: send messages in NTT domain

• Save two NTT computations

12



Polynomial multiplication

• Most costly arithmetic: multiply in Rq

• Choose q s.t. 2n | (q − 1)

• Use fast negacyclic number-theoretic transform (NTT)

• Compute r = ab as r = NTT−1(NTT(a) ◦ NTT(b))

• NTT computation: n
2 · log(n) “butterfly operations”

• Each butterfly: 1 addition, 1 subtraction, 1 multiplication by
constant

• NTT transforms uniform randomness to uniform randomness

• Idea: Assume that a is directly sampled in NTT domain

• Further optimization: send messages in NTT domain

• Save two NTT computations

12



Putting it all together

Alice (keygen):

seed
$← {0, . . . , 255}32

â←Parse(SHAKE-128(seed))

s, e $← ψn
16

ŝ←NTT(s)

b̂←â ◦ ŝ + NTT(e)

Send ma = encodeA(seed , b̂) (1824 Bytes)

13



Putting it all together

Bob (keygen+sharedkey):

s′, e′, e′′ $← ψn
16

(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))

t̂←NTT(s′)
û←â ◦ t̂ + NTT(e′)
k

$← {0, 1}256

k ′←SHA3-256(k)

k←NHSEncode(k ′)

c←NTT−1(b̂ ◦ t̂) + e′′ + k
c̄ $← NHSCompress(c)

Send mb = encodeB(û, c̄) (2176 Bytes)
µ←SHA3-256(k ′)

13



Putting it all together

Alice (sharedkey):

(û, c̄)←decodeB(mb)

c′←NHSDecompress(c̄)

k′ = c′ − NTT−1(û ◦ ŝ)

k ′←NHSDecode(k′)
µ←SHA3-256(k ′)

13



Performance

BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 258 246 88 920

Key gen + shared key (client) ≈ 3 995 977 384 994 110 986

Shared key (server) ≈ 481 937 86 280 19 422

• Cycle counts for NewHope on one core of an Intel i7-4770K
(Haswell)

• BCNS benchmarks are derived from openssl speed

• Includes around ≈ 37 000 cycles for generation of a on each side

• Compare to X25519 elliptic-curve scalar mult: 156 092 cycles

14



Google’s conclusions

“[. . . ] we did not find any unexpected impediment to deploying
something like NewHope. There were no reported problems caused by
enabling it.”

15



Google’s conclusions

“[. . . ] if the need arose, it would be practical to quickly deploy NewHope
in TLS 1.2. (TLS 1.3 makes things a little more complex and we did not
test with CECPQ1 with it.)”

15



Google’s conclusions

“Although the median connection latency only increased by a millisecond,
the latency for the slowest 5% increased by 20ms and, for the slowest
1%, by 150ms. Since NewHope is computationally inexpensive, we’re
assuming that this is caused entirely by the increased message sizes.
Since connection latencies compound on the web (because subresource
discovery is delayed), the data requirement of NewHope is moderately
expensive for people on slower connections.”

15



NewHope(-Simple) online

NewHope Paper: https://cryptojedi.org/papers/#newhope

NHS Paper: https://cryptojedi.org/papers/#newhopesimple

Software: https://cryptojedi.org/crypto/#newhope

Newhope for ARM: https://github.com/newhopearm/newhopearm.git

(by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)

More Software:
https://ianix.com/pqcrypto/pqcrypto-deployment.html

16

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/papers/#newhopesimple
https://cryptojedi.org/crypto/#newhope
https://github.com/newhopearm/newhopearm.git
https://ianix.com/pqcrypto/pqcrypto-deployment.html


NewHope(-Simple) online

NewHope Paper: https://cryptojedi.org/papers/#newhope

NHS Paper: https://cryptojedi.org/papers/#newhopesimple

Software: https://cryptojedi.org/crypto/#newhope

Newhope for ARM: https://github.com/newhopearm/newhopearm.git

(by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)

More Software:
https://ianix.com/pqcrypto/pqcrypto-deployment.html

16

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/papers/#newhopesimple
https://cryptojedi.org/crypto/#newhope
https://github.com/newhopearm/newhopearm.git
https://ianix.com/pqcrypto/pqcrypto-deployment.html

