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Linear Codes for Telecommunication

linear expansion
data

k

-

decoding
data? �

codeword

n > k

noisy codeword �

?

noisy channel

[Shannon, 1948] (for a binary symmetric channel of error rate p):

Decoding probability −→ 1 if
k

n
= R < 1− h(p)

(h(p) = −p log2 p− (1− p) log2(1− p) the binary entropy function)

Codes of rate R can correct up to λn errors (λ = h−1(1−R))

For instance 11% of errors for R = 0.5

Non constructive −→ no poly-time algorithm for decoding in general
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Random Codes Are Hard to Decode

When the linear expansion is random:

• Decoding is NP-complete [Berlekamp, McEliece & van Tilborg,

78]

• Even the tiniest amount of error is (believed to be) hard to re-

move. Decoding nε errors is conjectured difficult on average for

any ε > 0 [Alekhnovich, 2003].
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Codes with Good Decoders Exist

Coding theory is about finding “good” codes (i.e. linear expansions)

• alternant codes have a poly-time decoder for Θ
(

n

logn

)
errors

• some classes of codes have a poly-time decoder for Θ(n) errors

(algebraic geometry, expander graphs, concatenation, . . . )
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Linear Codes for Cryptography

linear expansion
plaintext

k

-

decoding
plaintext �

codeword

n > k

ciphertext �

?

intentionally add errors

• If a random linear code is used, no one can decode efficiently

• If a “good” code is used, anyone who knows the structure has

access to a fast decoder

Assuming that the knowledge of the linear expansion does not reveal

the code structure:

• The linear expansion is public and anyone can encrypt

• The decoder is known to the legitimate user who can decrypt

• For anyone else, the code looks random
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Why Consider Code-Based Cryptography?

Because

• it’s always good to understand more things

• cryptography needs diversity to evolve against

• quantum computing

• algorithmic progress

• we can do it

→ that’s what those lectures are about
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I. Introduction to Codes and

Code-based Cryptography



Notations

Fq the finite field with q elements

Hamming distance: x = (x1, . . . , xn) ∈ Fnq , y = (y1, . . . , yn) ∈ Fnq

dist(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}|

Hamming weight: x = (x1, . . . , xn) ∈ Fnq ,

|x| = |{i ∈ {1, . . . , n} | xi 6= 0}| = dist(x, 0)

Sn(0, t) = {e ∈ Fnq | |e| = t}

(the sphere, in the Hamming space Fnq , centered in 0 of radius t)
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Linear Error Correcting Codes

A q-ary linear [n, k] code C is a k-dimensional subspace of Fnq

A generator matrix G ∈ Fk×nq of C is such that C =
{
xG | x ∈ Fkq

}
It defines an encoder for C

fG : Fkq → C
x 7→ xG

The encoding can be inverted by multiplying a word of C by a right

inverse G∗ of G: if GG∗ = Id then fG(x)G∗ = xGG∗ = x

If G is in systematic form, G = (Id | R) then G∗ = (Id | 0)T is a right

inverse and the de-encoding consists in truncating
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Parity Check Matrix and Syndrome

Let C be a q-ary linear [n, k] code, let r = n− k

A parity check matrix H ∈ Fr×nq of C is such that C =
{
x ∈ Fnq | xHT = 0

}
The H-syndrome (or syndrome) of y ∈ Fnq is SH(y) = yHT

For all y ∈ Fnq , let s = yHT , the coset of y is defined as

Coset(y) = y + C = {z ∈ Fnq | zHT = yHT = s} = S−1
H (s)

The cosets form a partition of the space Fnq
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Decoding and Syndrome Decoding

Let C be a q-ary linear [n, k] code, let H be a parity check matrix of C

• ΦC : Fnq → C is a t-bounded decoder if for all x ∈ C and all e ∈ Fnq

|e| ≤ t⇒ ΦC(x+ e) = x

• ΨH : Fn−kq → Fnq is a t-bounded H-syndrome decoder if for all

e ∈ Fnq

|e| ≤ t⇒ ΨH(eHT ) = e

∃ an efficient

t-bounded decoder
⇔ ∃ an efficient

t-bounded syndrome decoder

N. Sendrier – Code-Based Public-Key Cryptography 10/56



McEliece Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary linear [n, k] codes

Key generation:

pick C ∈ F →

 Public Key: G ∈ Fk×nq , a generator matrix

Secret Key: Φ : Fnq → C, a t-bounded decoder

Encryption:

 EG : Fkq → Fnq
x 7→ xG+ e

 with e random of weight t

Decryption:

 DΦ : Fnq → Fkq
y 7→ Φ(y)G∗

 where GG∗ = 1

Proof: DΦ(EG(x)) = DΦ(xG+ e) = Φ(xG+ e)G∗ = xGG∗ = x
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Niederreiter Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary [n, k] codes, r = n− k

Key generation: pick C ∈ F

→

 Public Key: H ∈ Fr×nq , a parity check matrix

Secret Key: Ψ : Frq → Fnq , a t-bounded H-syndrome decoder

Encryption:

 EH : Sn(0, t) → Frq
e 7→ eHT



Decryption:

 DΨ : Frq → Sn(0, t)

s 7→ Ψ(s)


Proof: DΨ(EH(e)) = DΨ(eHT ) = e
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McEliece/Niederreiter Security

The following two problems must be difficult enough:

1. Retrieve an efficient t-bounded decoder from the public key (i.e.

a generator matrix or a parity check matrix)

The legitimate user must be able to decode thus some structure

exists, it must remain hidden to the adversary

2. Decode t errors in a random q-ary [n, k] code

Without knowledge of the trapdoor the adversary is reduced to

use generic decoding techniques

The parameters n, k and t must be chosen large enough
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In Practice

[McEliece, 1978]

“A public-key cryptosystem based on algebraic coding theory”

The secret code family consisted of irreducible binary Goppa codes

of length 1024, dimension 524, and correcting up to 50 errors

• public key size: 536 576 bits

• cleartext size: 524 bits

• ciphertext size: 1024 bits

A bit undersized today (attacked in [Bernstein, Lange, & Peters, 08]

with ≈ 260 CPU cycles)

[Niederreiter, 1986]

“Knapsack-type cryptosystems and algebraic coding theory”

Several families of secret codes were proposed, among them Reed-

Solomon codes, concatenated codes and Goppa codes. Only Goppa

codes are secure today.
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II. Instantiating McEliece



Which Code Family ?

Finding families of codes whose structure cannot be recognized seems

to be a difficult task

Family Proposed by Broken by

Goppa McEliece (78) -

Reed-Solomon Niederreiter (86) Sidelnikov & Chestakov (92)

Concatenated Niederreiter (86) Sendrier (98)

Reed-Muller Sidelnikov (94) Minder & Shokrollahi (07)

AG codes Janwa & Moreno (96) Faure & Minder (08)

Couvreur, Márquez-Corbella.

& Pellikaan (14)

LDPC Monico, Rosenthal, & Shokrollahi (00)

Convolutional Löndahl & Landais & Tillich (13)

codes Johansson (12)

[Faugère, Gauthier, Otmani, Perret, & Tillich, 11] distinguisher for

binary Goppa codes of rate → 1
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More on Goppa Codes

Goppa codes are not limited to the binary case. It is possible to define

q-ary Goppa codes with a support in Fqm.

[Bernstein, Lange, & Peters, 10]: Wild McEliece. The key size can

be reduced in some case. There are limits:

• [Couvreur, Otmani, & Tillich, 14] Choose m > 2

• [Faugère, Perret, & Portzamparc, 14] Caution if q not prime

N. Sendrier – Code-Based Public-Key Cryptography 16/56



Reducing the Public Key Size

In a block-circulant matrix, each (square) block is completely defined
by its first row → public key size is linear instead of quadratic

G =

g0,0 g0,1 g0,2

� � �
g1,0 g1,1 g1,2

� � �
• Quasi-cyclic [Gaborit, 05] or quasi-dyadic [Misoczki & Barreto,

09] alternant (Goppa) codes. Structure + structure must be
used with great care [Faugère, Otmani, Perret, & Tillich, 10]

• Disguised QC-LDPC codes [Baldi & Chiaraluce, 07]. New promis-
ing trend.

• QC-MDPC [Misoczki, Tillich, Sendrier, & Barreto, 13]. As above
with a stronger security reduction.
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Irreducible Binary Goppa Codes

Parameters: m, t and n ≤ 2m

Support: L = (α1, . . . , αn) distinct in F2m

Generator: g(z) ∈ F2m[z] monic irreducible of degree t

For all a = (aα1, . . . , aαn) ∈ Fn2 (we use L to index the coordinates) let

Ra(z) =
∑
β∈L

aβ

z − β
and σa(z) =

∏
β∈L

(z − β)aβ.

The binary irreducible Goppa code Γ(L, g) is defined by

a ∈ Γ(L, g)⇔ Ra(z) = 0 mod g(z).

It is a binary linear [n, k ≥ n−mt] code and for all e ∈ Fn2

Re(z)σe(z) =
d

dz
σe(z) mod g(z). (1)

Given Re(z), the key equation (1) can be solved in σe(z) if |e| ≤ t

providing a poly-time t-bounded decoder.
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Some Sets of Parameters for Goppa Codes

text size in bits

McEliece Niederreiter key message

m, t cipher clear cipher clear size security∗

10,50 1024 524 500 284 32 kB 52

11,40 2048 1608 440 280 88 kB 81

12,50 4096 3496 600 385 277 kB 120

∗ logarithm in base 2 of the cost of the best known attack

lower bound derived from ISD, BJMM variant (generic decoder)

the key security is always higher (≈ mt)

key size is given for a key in systematic form
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Some Sets of Parameters for QC-MDPC-McEliece

Binary QC-MDPC [n, k] code with parity check equations of weight

w correcting t errors

size in bits security∗

(n, k, w, t) cipher clear key message key

(9602,4801,90,84) 9602 4801 4801 80 79

(19714,9857,142,134) 19714 9857 9857 128 129

∗ logarithm in base 2 of the cost of the best known attack

lower bound derived from ISD, BJMM variant

The best key attack and the best message attack are both based on

generic decoding
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III. Security Reduction to

Difficult Problems



Hard Decoding Problems

[Berlekamp, McEliece, & van Tilborg, 78]

Syndrome Decoding NP-complete

Instance: H ∈ Fr×n2 , s ∈ Fr2, w integer

Question: Is there e ∈ Fn2 such that |e| ≤ w and eHT = s?

Computational Syndrome Decoding NP-hard

Instance: H ∈ Fr×n2 , s ∈ Fr2, w integer

Output: e ∈ Fn2 such that |e| ≤ w and eHT = s

[Finiasz, 04]

Goppa Bounded Decoding NP-hard

Instance: H ∈ Fr×n2 , s ∈ Fr2
Output: e ∈ Fn2 such that |e| ≤

r

log2 n
and eHT = s

Open problem: average case complexity (Conjectured difficult)
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Hard Structural Problems

Goppa code Distinguishing NP

Instance: G ∈ Fk×n2
Question: Does G span a binary Goppa code?

• NP: the property is easy to check given (L, g)

• Completeness status is unknown

• Easy when the information rate → 1

(Faugère, Gauthier, Otmani, Perret, & Tillich, 11)

Goppa code Reconstruction

Instance: G ∈ Fk×n2
Output: (L, g) such that Γ(L, g) =

{
xG | x ∈ Fkq

}
• Tightness: gap between decisional and computational problems

N. Sendrier – Code-Based Public-Key Cryptography 22/56



Decoders and Distinguishers

For given parameters n, k, and t

Let G ⊂ K ⊂ Fk×n2 , where G is the public key space and K the apparent

public key space. (in the original scheme, G is the set of all generator

matrices of a Goppa code and K = Fk×n2 )

For quasi-cyclic variants, the apparent key space K is limited to block-

circulant matrices.

We consider two programs

• a decoding algorithm: A : Fn2 × Fk×n2 → Sn(0, t)

• a distinguisher: D : Fk×n2 → {true, false}

We consider the sample space Ω = Fk2 ×Fk×n2 ×Sn(0, t) equipped with

the uniform distribution, and the event (successful decoding)

SA = {(x,G, e) ∈ Ω | A(xG+ e,G) = e}
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Decoders and Distinguishers (continued)

K the apparent public key space A : Fn2 × Fk×n2 → Sn(0, t)

G the (real) public key space D : Fk×n2 → {true, false}

—

A is a (T, ε)-decoder (generic for K) if

• running time: |A| ≤ T
• success probability: SuccDec(A) = PrΩ(SA | G ∈ K) ≥ ε

A is a (T, ε)-adversary (against McEliece) if

• running time: |A| ≤ T
• success probability: SuccMcE(A) = PrΩ(SA | G ∈ G) ≥ ε

D is a (T, ε)-distinguisher (for G against K) if

• running time: |D| ≤ T
• advantage:

Adv(D) =
∣∣∣PrΩ(D(G) | G ∈ K)− PrΩ(D(G) | G ∈ G)

∣∣∣ ≥ ε
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Security Reduction for McEliece

Theorem

If there exists a (T, ε)-adversary then there exists either

• a (T, ε/2)-decoder (for K),

• or a (T +O(n2), ε/2)-distinguisher (for G against K),

Proof (hint):

D(G):

x← Fk2 ; e← Sn(0, t) // randomly and uniformly

return A(xG+ e,G)
?
= e

The result holds also for the Niederreiter scheme and for any real and

apparent public key spaces G and K. For quasi-cyclic variants, the

apparent key space K is limited to block-circulant matrices.
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One Way Encryption Schemes

A scheme is OWE (One Way Encryption) if all the attacks are in-

tractable on average when the messages and the keys are uniformly

distributed

Loosely speaking, there is no (T, ε)-adversary with T/ε upper bounded

by a polynomial in the system parameters

Assuming

• decoding in a random linear code is hard

• Goppa codes are pseudorandom

McEliece and Niederreiter cryptosystems are One Way Encryption

(OWE) schemes
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Malleability Attacks

Create New Ciphertext. folklore

If y is a ciphertext and a is a codeword then y + a is a ciphertext

Not a desirable feature a priori...

Resend-message Attack. [Berson, 97]

The same message x is sent twice with the same public key G

→ the message can be recovered

Reaction Attack. [Kobara & Imai, 00] ??

We assume the decryption system can be used as an oracle and

behaves differently when

• its input is at distance > t from the code,

• its input is at distance ≤ t from the code.

→ the oracle can be tranformed into a decoder
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Semantically Secure Conversions

Being OWE is a very weak notion of security. In the case of code-

based systems, it does not encompass attacks such that the “resend-

message attack”, the “reaction attack” or, more generally, attacks

related to malleability.

Fortunately, using the proper semantically secure conversion any de-

terministic OWE scheme can become IND-CCA, the strongest secu-

rity notion.

McEliece is not deterministic but IND-CCA conversion are possible

nevertheless, see [Kobara & Imai, 01] for the first one.

An IND-CPA conversion without random oracle also exists [Nojima,

Imai, Kobara & Morozov, 08].
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IV. Implementation



A Remark on Niederreiter Encryption Scheme

In Niederreiter’s system the encryption procedure is:

EH : Sn(0, t) → Fr2
e 7→ eHT

The set Sn(0, t) is not very convenient to manipulate data, we would

rather have an injective mapping

ϕ : F`2 → Sn(0, t)

with ` < log2

(
n
t

)
but as close as possible. In addition, we need ϕ and

ϕ−1 to have a fast implementation.

In that case the encryption becomes EH◦ϕ and the decryption ϕ−1◦DΨ

Note that ϕ is also required for the semantically secure conversions

of McEliece as we must “mix” the error with the message
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Constant Weight Words Encoding - Combinatorial Solution

[Schalkwijk, 72]

We represent a word of Sn(0, t) by the indexes of its non-zero co-

ordinates 0 ≤ i1 < i2 < . . . < it < n and we define the one-to-one

mapping

θ : Sn(0, t) −→
[
0,
(
n
t

)[
(i1, . . . , it) 7−→

(
i1
1

)
+
(
i2
2

)
+ · · ·+

(
it
t

)
This mapping can be inverted by using the formula [Sendrier 02]

i ≈ (xt!)1/t +
t− 1

2
where x =

(
i
t

)

We can encode ` =
⌊
log2

(
n
t

)⌋
bits in one word of Sn(0, t)

The cost in quadratic in `
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Constant Weight Words Encoding - Source Coding Solutions

Another approach is to use source coding. We try to find an ap-

proximative models for constant weight words which are simpler to

encode.

It is possible to design fast (linear time) methods with a minimal loss

(one or very few bits per block)

• fastest → variable length encoding

• fast → constant length encoding (implemented in HyMES)

Still not negligible compared to the encryption cost

Regular word (used in code-based hash function FSB) is an extreme

example with a very high speed but a big information loss (the model

for generating constant weight words is very crude)
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Deterministic Version of McEliece

Hybrid McEliece encryption scheme (HyMES) [Biswas & Sendrier, 08]

Parameters: m, t, n = 2m, ϕ : F`2 → Sn(0, t)

Secret key: (L, g) ∈ Fn2m × F2m[z]

where

 L = (α1, . . . , αn) distinct in F2m

g(z) ∈ F2m[z] monic irreducible of degree t

Public key: R ∈ Fk×(n−k)
2

where G = (Id | R) is a systematic generator matrix of Γ(L, g)

Encryption:

 ER : Fk2 × F`2 → Fn2
(x, x′) 7→ (x, xR) + ϕ(x′)



Decryption:

 DL,g : Fn2 → Fk2 × F`2
y 7→ (x, x′)


where (x, ∗) = ΦL,g(y) and x′ = ϕ−1(y −ΦL,g(y))
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Security of Hybrid McEliece

• Using the error for encoding information

No security loss!

In fact, there is a loss of a factor at most 2`/
(
n
t

)
• Using a systematic generator matrix

The system remains OWE, puzzling but true!

cleartext: x

ciphertext: (x, xR) + e with e of small weight

No change in security, but there is a need for a semantically secure

layer (as for the original system)
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Conversion for Semantic Security – OAEP

[Bellare & Rogaway, 94]

(rnd) (0 · · ·0)yx

y ⊕ f(x)x

y ⊕ f(x)x⊕ h(y ⊕ f(x))

f ⊕

h⊕

?

?

?

- -

?

? ?

��

2-round Feistel scheme

 a = x⊕ h(y ⊕ f(x))

b = y ⊕ f(x)
⇔

 x = a⊕ h(b)

y = b⊕ f(a⊕ h(b))

Under the “random oracle assumption” on f and h this conversion
provides semantic security (non malleability and indistinguishability).
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Encryption/Decryption Speed

sizes cycles/byte cycles/block

m, t cipher clear encrypt decrypt encrypt decrypt security

11,40 2048 1888 105 800 25K 189K 81

12,50 4096 3881 98 618 47K 300K 120

(Intel Xeon 3.4Ghz, single processor) 100 Kcycle ≈ 30 µs

AES: 10-20 cycles/byte

McBits [Berstein, Chou, & Schwabe] gains a factor ≈ 5 on decoding

(bit-sliced field arithmetic + algorithmic innovations for decoding).

Targets key exchange mechanism based on Niederreiter.
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V. Practical Security - The

Attacks



Best Known Attacks

Decoding attacks. For the public-key encryption schemes the best

attack is always Information Set Decoding (ISD), this will change

for other cryptosystems

Key attacks. Most proposals using families other than binary Goppa

codes have been broken

For binary Goppa codes there are only exhaustive attacks enumer-

ating either generator polynomials either supports (that is permu-

tations)
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Syndrome Decoding – Problem Statement

Computational Syndrome Decoding

CSD(n, r, w)

Given H ∈ Fr×n2 and s ∈ Fr2, solve eHT = s with |e| ≤ w

e = Hamming weight w

H = s =

-�
n

6

?

r

Find w columns of H adding to s

Very close to a subset sum problem

For instance


n = 2048

r = 352

w = 32

→ computing effort > 280
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Algorithm 0

H = s =

-�
n

6

?

r

Compute every sum of w columns → complexity
(
n
w

)
column ops.

1 column operation



1 read or write

and

1 test

and

1 addition or weight computation
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Algorithm 1: Birthday Decoding

H =

w/2 w/2

H1 H2 s =

-�
n

6

?

r

Compute {H1e | |e| = w/2} ∩ {s+H2e | |e| = w/2}

Complexity 2
(
n/2
w/2

)
and non-empty with probability

(
n/2
w/2

)2

(
n
w

)

→ average cost 2

(
n
w

)
(
n/2
w/2

) ≈ 4√8πw
√(

n
w

)
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Algorithm 2: Information Set Decoding [Prange, 1962]

Big difference with subset sums: one can use linear algebra

UHP = Us =

-�
rn = r + k

-� k
information set

6

?

r

w 0

1

1

···

Repeat for several permutation matrices P

Claim: if |Us| ≤ w, I win!

Success probability:
(
r
w

)
/
(
n
w

)
≈ (r/n)w

Total cost: ≈ rn(n/r)w column operations
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Algorithm 2’: ISD [Lee & Brickell, 1988]

Idea: amortize the Gaussian elimination

UHP = H ′ Us =

-�
rn = r + k

-� k
information set

6

?

r

w − p p

1

1

Repeat for several permutation matrices P

Claim: if ∃e with |e| = p and
∣∣Us+H ′e

∣∣ = w − p, I win!

Success probability:

(
r

w−p
)(
k
p

)
(
n
w

) Iteration cost: rn+
(
k
p

)

Total cost:

(
n
w

)
(

r
w−p

)
1 +

rn(
k
p

)
, only a polynomial gain
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Generalized Information Set Decoding

[Stern, 89] ; [Dumer, 91]

UHP = Us =

-�
k + `

6

?

r − `

6

?
` s′

s′′

H ′

H ′′

w − p pw − p p

1

1

0

Repeat:


1. Permutation + partial Gaussian elimination

2. Find many e′ of weight p such that H ′e′ = s′

3. For all good e′, test
∣∣s′′+H ′′e′

∣∣ ≤ w − p
Step 3. is (a kind of) Lee & Brickell which embeds Step 2

Step 2. is Birthday Decoding (or whatever is best)

Total cost is minimized over ` and p
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Generalized Information Set Decoding – Workfactor

eP =

UHP = sUT =

-�
n

-�

k + `

6

?

r − `

6

?
` s′

s′′

H ′

H ′′

e′
w − p p ← weight profile

1

1

0

Assuming the Gaussian elimination cost is not significant

WFISD = min
p,`

(
n
w

)
(
r−`
w−p

)(
k+`
p

)
√(k+`

p

)
+

(
k+`
p

)
2`


column operations up to a small constant factor. Simplifies to

WFISD = min
p

(
n
w

)
(
r−`
w−p

)√(
k+`
p

) with ` = log
(√(

k+`
p

))
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Information Set Decoding – Timeline

• Information Set Decoding: [Prange, 62]

• Relax the weight profile: [Lee & Brickell, 88]

• Compute sums on partial columns first: [Leon, 88]

• Use the birthday attack: [Stern, 89], [Dumer, 91]

• First “real” implementation: [Canteaut & Chabaud, 98]

• Initial McEliece parameters broken: [Bernstein, Lange, & Peters, 08]

• Lower bounds: [Finiasz & Sendrier, 09]

• Ball-collision decoding [Bernstein, Lange, & Peters, 11]

• Asymptotic exponent improved [May, Meurer, & Thomae, 11]

• Decoding one out of many [Sendrier, 11]

• Even better asymptotic exponent [Becker, Joux, May, & Meurer, 12]

• “Nearest Neighbor” variant [May & Ozerov, 15]

• Sublinear error weight [Canto Torres & Sendrier, 16]
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Key Security

This is the main security issue in code based cryptography

• Find families of codes whose generator matrices are indistinguish-

able from random matrices

• Goppa codes: excluding a few extremal cases, Goppa codes (bi-

nary or not) seem to be pseudorandom→ best attack is essentially

an exhaustive search

We assume it is true, do we have better arguments?

• Can we find quasi-cyclic families which are indistinguishable?

QC-MDPC is an answer to some extent. Can we do better?
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Conclusion for Public Key Encryption

• Good security reduction

partly heuristic though:

– nothing proven on the average case complexity of decoding

– indistinguishability assumptions need more attention

• The best attacks are decoding attacks

→ generic decoding is an essential long term research topic (in-

cluding with quantum algorithms)

• Open problems are mainly related to the key security

– find other good families of codes

– safely reduce the public key size
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VI. Other Public Key Systems



Other Public Key Systems

• Digital Signature, [Courtois, Finiasz & Sendrier, 01]

Same kind security reduction:

Hardness of decoding & Indistinguishability of Goppa codes

• Zero Knowledge identification

[Stern, 93], [Véron, 95], [Gaborit & Girault, 07]

Much stronger security reduction: Hardness of decoding only

• And also. . .

ID based signature [Cayrel, Gaborit & Girault, 07]

Threshold ring signature [Aguilar-Melchor, Cayrel & Gaborit, 08],
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CFS Digital Signature

H ∈ Fr×n2 a parity check matrix of a t-error correcting Goppa code

Signing: the message M is given

• Hash the text M into a binary word h(M) = s ∈ Fr2
• Find e of minimal weight such that eHT = s

• Use e as a signature

Verifying: M and e are given

• Hash the text M into a binary word h(M) = s ∈ Fr2
• Check eHT = s
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CFS Digital Signature – Not so Easy

In practice n = 2m = 216, t = 9 and r = n− k = tm = 144

The public key H has size 144× 65536 (≈ 1.2 MB)

Let s ∈R F144
2 , let w be the minimal weight of e such that s = eHT

• w ≤ 9 with probability ≈ 3 10−6 (in general w ≤ t with prob. 1/t!)

• w = 10 with probability ≈ 10−2

• w = 11 with probability ≈ 1− 10−46

w = 11 is the smallest number such that
(

216

11

)
> 2144

Problem:

• the trapdoor only allows the correction of t = 9 errors

• we need to decode 11 errors → we have to guess 2 error positions

• requires t! = 362880 decoding attempts on average

The legitimate user has to pay ≈ 233 while the attacker has to pay

> 277
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CFS Digital Signature – Scalability

Binary Goppa code of length n = 2m correcting t errors

The public key H ∈ Fr×n2 (where r = tm is the codimension)

Signature cost t!O(m2t2)

Signature length tm− log2(t!)

Verification cost O(mt2)

Public key size tm2m

Security bits 1
2tm

• The signature cost is exponential in t

• The key size is exponential in m

• The security is exponential in tm
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CFS Digital Signature – Decoding One Out of Many

Bleichenbacher’s “Decoding One Out of Many”-type attack (2003 or

2004, unpublished) reduces the security to 1
3tm

[Finiasz, 10] Parallel-CFS: sign several related syndrome.

• take a (λ times) longer hash of the message h(M) = (s1, ..., sλ)

• sign all λ syndromes → security back to 1
2tm

• λ must be 3 or 4 (do not need to grow with the security parameter)

Signature length & cost and verification cost all multiplied by λ
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CFS Digital Signature – Implementation

• [Landais & Sendrier, 12] Software implementation of parallel-CFS

(m, t) = (20,8), λ = 3 → 80 bits security

Key size: 20 MB, one signature in ≈ 1.5 seconds

• [+ Schwabe] bit-sliced field arithmetic → 100 milliseconds for one

signature

An important security issue: binary Goppa codes of rate → 1 are not

pseudorandom (no attack, but no security reduction either)
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Stern ZK Authentication Protocol

Parameters: H ∈ Fr×n2 , weight w > 0, commitment scheme c(·)
Secret: some word e of weight w (w ≈ Gilbert-Varshamov distance)
Public: the syndrome s = eHT

Prover Verifier

Commitment
σ ← Sn
y ← Fn2

c0,c1,c2−→

Challenge
b←− b← {0,1,2}

Answer
Ab−→ check commitments

c0 = c(σ(y + e))

c1 = c(yHT , σ)

c2 = c(σ(y))


A0 = y, σ

A1 = σ(y), σ(e)

A2 = (y + e), σ

Check:


if b = 0 check c1 and c2
if b = 1 check c0 and c2 (and |σ(e)| = w)

if b = 2 check c0 and c1
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Stern ZK Authentication Protocol – Security

• An honest prover always succeeds (completeness)

• A dishonest prover succeeds for one round with probability 2/3 at

most (eventually leading to soundness)

• No information on the secret leaks (zero-knowledge)

→ For a security level S, S/log2(3/2) ≈ 1.7S rounds are needed

(80 bits security → 137 rounds, 128 bits security → 219 rounds)

→ Can be transformed into a signature (Fiat-Shamir NIZK)

→ A tight security reduction to syndrome decoding
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Signing with Stern ZK Protocol

Prover Verifier

Commitment
σi ← Sn
yi ← Fn2

c0,i,c1,i,c2,i−→

Challenge
bi←− bi ← {0,1,2}

Answer
Abi,i−→ check commitments

• Draw σi, yi, and compute c0,i, c1,i, c2,i for all i, 1 ≤ i ≤ R
• Compute x = Hash((c0,i, c1,i, c2,i)1≤i≤R)

• Draw bi, 1 ≤ i ≤ R, using a PRNG with seed x

• The signature is (Abi,i, c0,i, c1,i, c2,i)1≤i≤R

80 bits security → signature of 174 Kbits

128 bits security → signature of 445 Kbits

[Aguilar-Melchor, Gaborit, & Schrek, 11] reduced to 79 and 202 Kbits
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General Conclusions

• Code-based cryptosystems are practical, efficient, secure, versatile

. . . some of them at least

• Also symmetric schemes (hash function, stream ciphers,. . . )

• Strong features

• Hardness of decoding, tight security reductions in that respect

• Efficient algorithms: fast public key encryption

• Not so strong features

• Public key size (not necessarily a problem)

• Few code families: biodiversity would be welcome

• Main open problems

• Key security (security assumptions, families of codes, . . . )

• Key size reduction: what gain for what cost?

• Improve the digital signature
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Thank you for your attention



Appendix

—

MDPC McEliece



QC-MDPC-McEliece Scheme (1/2)

Parameters: n, k, w, t
(for instance n = 9601, k = 4801, w = 90, t = 84)

Key generation: (rate 1/2, n = 2p, k = p)

Pick a (sparse) vector (h0, h1) ∈ Fp2 × Fp2 of weight w

Hsecret =

h0 h1

� �
with h0(x) invertible in F2[x]/(xp − 1)
(circulant binary p× p matrices are isomorphic to F2[x]/(xp − 1))

Publish h(x) = h1(x)h−1
0 (x) mod xp − 1 or g(x) = h(x)/x

H =

1 h

�
1 � or G =

g 1

�� 1

H a parity check matrix, G a generator matrix
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QC-MDPC-McEliece Scheme (2/2)

Encryption: (rate 1/2, n = 2p, k = p)

F2[x]/(xp − 1) → F2[x]/(xp − 1)× F2[x]/(xp − 1)

m(x) 7→ (m(x)g(x) + e0(x),m(x) + e1(x))

The error e(x) = (e0(x), e1(x)) has weight t

Decryption:

Iterative decoding (as for LDPC codes) which only requires the sparse

parity check matrix. For instance the “bit flipping” algorithm

Parameters are chosen such that the decoder fails to correct t errors

with negligible probability

Each iteration has a cost proportional to w · (n − k), the number of

iterations is small (3 to 5 in practice)
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QC-MDPC-McEliece Security Reduction

H =

1 h

�
1 � with h(x) =

h1(x)

h0(x)
mod xp − 1

Secure under two assumptions

1. Pseudorandomness of the public key

Hard to decide whether there exists a sparse vector in the code

spanned by H (the dual of the MDPC code)

2. Hardness of generic decoding of QC codes

Hard to decode in the code of parity check matrix H (for an

arbitrary value of h)
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QC-MDPC — Sparse Polynomial Problems

The security reduction and the attacks can be stated in terms of

polynomials

1. Key Security

Given h(x), find non-zero (h0(x), h1(x)) such that h0(x) + h(x)h1(x) = 0 mod xp − 1

|h0|+ |h1| ≤ w

or simply decide the existence of a solution → distinguisher

2. Message Security

Given h(x) and S(x), find e0(x) and e1(x) such that e0(x) + h(x)e1(x) = S(x) mod xp − 1

|e0|+ |e1| ≤ t

In both cases, best known solutions use generic decoding algorithms
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QC-MDPC — Practical Security – Best Known Attacks

Let WSD(n, k, t) denote the cost for the generic decoding of t errors
in a binary [n, k] code

We consider a QC-MDPC-McEliece instance with parameters n, k, w, t
and circulant blocks of size p.

1. Key Attack: find a word of weight w in a quasi-cyclic binary
[n, n− k] code

WK(n, k, w) ≥
WSD(n, n− k,w)

n− k
(there are n− k words of weight w)

2. Message Attack: decode t errors in a quasi-cyclic binary [n, k]
code

WM(n, k, t, p) ≥
WSD(n, k, t)

√
p

(Decoding One Out of Many [S., 11] → factor
√
p)
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QC-MDPC — Parameter Selection

Choose a code rate k/n and a security exponent S (for instance 80

or 128). Then increase the block size until the following succeeds:

• find w the smallest integer such that WK(n, k, w) ≥ 2S

• find t the error correcting capability of the corresponding MDPC

code

• check that WM(n, k, t, p) ≥ 2S

80 bits of security 128 bits of security

n = 9602 n = 19714

k = 4801 k = 9857

p = 4801 p = 9857

w = 90 w = 142

t = 84 t = 134
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QC-MDPC — Scalability

A binary [n, k] code with n−k parity equations of weight w will correct

t errors with an LDPC-like decoding algorithm as long as t · w / n

For LDPC codes, we have essentially w = O(1). For MDPC codes

we have w = O(
√
n) and thus t = O(

√
n).

The optimal trade-off between the key size (K) and the security (S)

is obtained for codes of rate 1/2 and

K ≈ cS2 with c < 1

For Goppa code, the optimal code rate is ≈ 0.8 and

K ≈ c (S log2 S)2 with c ≈ 2
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QC-MDPC — Bit-Flipping Decoding

Parameter: a threshold T

input: y ∈ Fn2 , H ∈ F(n−k)×n
2

Repeat

Compute the syndrome HyT

for j = 1, . . . , n

if more than T parity equations involving j are violated then

flip yj

HyT =


s1
...

sn−k

, if si 6= 0 the i-th parity equation is violated

If H is sparse enough and y close to the code of parity check matrix

H then the algorithm finds the closest codeword after a few iterations
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