An introduction to isogeny-based crypto

Chloe Martindale

Technische Universiteit Eindhoven
PQCrypto Summer School 2017
July 3, 2017

Diffie-Hellman key exchange

- Let S be a set (e.g. \mathbb{F}_{p} or $E\left(\mathbb{F}_{p}\right)$).
- Let G be a group (e.g. \mathbb{Z}) that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, x) & \mapsto & a * x
\end{array}
$$

Diffie-Hellman key exchange

- Let S be a set (e.g. \mathbb{F}_{p} or $\left.E\left(\mathbb{F}_{p}\right)\right)$.
- Let G be a group (e.g. \mathbb{Z}) that acts on \mathbb{F}_{p} as

$$
\begin{array}{ccc}
\mathbb{Z} \times \mathbb{F}_{p} & \longrightarrow \mathbb{F}_{p} \\
(a, x) & \mapsto & x^{a}
\end{array}
$$

Diffie-Hellman key exchange

- Let S be a set $\left(\right.$ e.g. \mathbb{F}_{p} or $\left.E\left(\mathbb{F}_{p}\right)\right)$.
- Let G be a group (e.g. $\mathbb{Z})$ that acts on $E\left(\mathbb{F}_{p}\right)$ as

$$
\begin{array}{ccc}
\mathbb{Z} \times E\left(\mathbb{F}_{p}\right) & \longrightarrow & E\left(\mathbb{F}_{p}\right) \\
(n, P) & \mapsto & n P
\end{array}
$$

Diffie-Hellman key exchange

- Let S be a set (e.g. \mathbb{F}_{p} or $\left.E\left(\mathbb{F}_{p}\right)\right)$.
- Let G be a group (e.g. \mathbb{Z}) that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, x) & \mapsto & a * x
\end{array}
$$

a

$$
a *(b * x)
$$

- $k=a *(b * x)=b *(a * x)$

Diffie-Hellman key exchange

- Let S be a set (e.g. \mathbb{F}_{p} or $\left.E\left(\mathbb{F}_{p}\right)\right)$.
- Let G be a group (e.g. \mathbb{Z}) that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, x) & \mapsto & a * x
\end{array}
$$

a

- $k=a *(b * x)=b *(a * x)$
- Finding a or b given $x, a * x$, and $b * x$ should be hard!

Quantum-hard Diffie-Hellman

- Classical Diffie-Hellman: $S=\mathbb{F}_{p}$ and $G=\mathbb{Z}$ with $(a, x) \mapsto x^{a}$ is not hard enough with a quantum computer.
- Elliptic Curve Diffie-Hellman: $S=E\left(\mathbb{F}_{p}\right)$ and $G=\mathbb{Z}$ with $(n, P) \mapsto n P$ is not hard enough with a quantum computer.
- Supersingular Isogeny Diffie-Hellman has a chance of being quantum secure! What is it?

Definition

Let q be a prime power such that $2,3 \chi$ q. We define an elliptic curve over \mathbb{F}_{q} to be a curve of the form

$$
y^{2}=x^{3}+a x+b
$$

where a and b are elements of \mathbb{F}_{q} and $4 a^{3}+27 b^{2} \neq 0$.

Elliptic Curves

Definition

Let q be a prime power such that 2,3 久 q. We define an elliptic curve over \mathbb{F}_{q} to be a curve of the form

$$
y^{2}=x^{3}+a x+b
$$

where a and b are elements of \mathbb{F}_{q} and $4 a^{3}+27 b^{2} \neq 0$.

Elliptic Curves

Definition

Let q be a prime power such that 2,3 久q. We define an elliptic curve over \mathbb{F}_{q} to be a curve of the form

$$
y^{2}=x^{3}+a x+b
$$

where a and b are elements of \mathbb{F}_{q} and $4 a^{3}+27 b^{2} \neq 0$.
Definition
The j-invariant of an elliptic curve $E: y^{2}=x^{3}+a x+b$ is given by

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

This defines E up to $\overline{\mathbb{F}_{q}}$-isomorphism.

Elliptic Curves

The j-invariant of an elliptic curve $E: y^{2}=x^{3}+a x+b$ is given by

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

Example
Define

$$
E / \mathbb{F}_{11}: y^{2}=x^{3}+x+1
$$

Then $j(E)=1728 \frac{4}{31} \equiv 9$. Try the isomorphism $(x, y) \mapsto(4 x, 8 y)$:

$$
(8 y)^{2}=(4 x)^{3}+4 x+1
$$

Divide by 64 :

$$
\begin{gathered}
E^{\prime} / \mathbb{F}_{11}: y^{2}=x^{3}+9 x+5 \\
j\left(E^{\prime}\right)=1728 \frac{4 \cdot 9^{3}}{4 \cdot 9^{3}+27 \cdot 5^{2}} \equiv 9
\end{gathered}
$$

Back to Diffie-Hellman

- Let S be a set (e.g. \mathbb{F}_{p} or $E\left(\mathbb{F}_{p}\right)$).
- Let G be a group (e.g. \mathbb{Z}) that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, x) & \mapsto & a * x
\end{array}
$$

Back to Diffie-Hellman

- Let $S=\left\{j\left(E_{1}\right), \ldots, j\left(E_{n}\right)\right\}$ be the set of j-invariants of elliptic curves over \mathbb{F}_{q}.
- We need a group G that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, j(E)) & \mapsto & a * j(E)
\end{array}
$$

Definition

An isogeny of elliptic curves over \mathbb{F}_{q} is a non-zero morphism $E \rightarrow E^{\prime}$ that preserves the identity. It is given by rational maps.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies I: the group law on elliptic curves

- For any field k (e.g. \mathbb{F}_{p} or \mathbb{Q}), the k-rational points of E form a group $E(k)$.

Understanding isogenies II: examples

An isogeny of elliptic curves over \mathbb{F}_{q} is a non-zero morphism $E \rightarrow E^{\prime}$ that preserves the identity. It is given by rational maps. (A morphism is a map of curves that preserves the group law).

Understanding isogenies II: examples

- The top isogeny is
$(x, y) \mapsto\left(\left(x^{3}+4\right) / x^{2},\left(x^{3} y-8 y\right) / x^{3}\right)$.
- Define the curves over \mathbb{F}_{17}. Then it is ' $3: 1$ ' (and surjective), so for every \mathbb{F}_{17}-point on the green curve there are $3 \mathbb{F}_{17}$-points on the blue curve which map to it.
- Exercise: which 3 points on the blue curve map to $(3,0)$?
- Sanity check: $j(E)=0, j(E)=1$, $j(E)=0$. Exercise: check that E and E are isomorphic over $\mathbb{F}_{17^{2}}$ but not over \mathbb{F}_{17}.

Understanding isogenies III: useful facts

- If a (separable) isogeny φ has kernel of size ℓ (so φ is $\ell: 1$) the degree of φ is ℓ.
- Write

$$
\begin{array}{lllc}
{[\ell]:} & E & \longrightarrow & E \\
& P & \mapsto & \ell P
\end{array}
$$

for the multiplication-by- ℓ map on E.

- For every isogeny $\varphi: E \rightarrow E^{\prime}$, of degree n, there exists a dual isogeny $\varphi^{\vee}: E^{\prime} \rightarrow E$ of degree ℓ such that $\varphi^{\vee} \circ \varphi=[\ell]$. That is, for every $P \in E\left(\overline{\mathbb{F}_{p}}\right)$,

$$
\varphi^{\vee}(\varphi(P))=\ell P
$$

- For $P \in E\left(\overline{\mathbb{F}_{q}}\right)$, if $\varphi(P)=\infty$, then $\ell P=\infty$, so

$$
\operatorname{ker}(\varphi) \subseteq \operatorname{ker}([\ell])=: E[\ell]
$$

Understanding isogenies IV: counting the possibilities

Remember: if $\varphi: E \rightarrow E^{\prime}$ is a separable isogeny and $\# \operatorname{ker}(\varphi)=\ell$, then $\operatorname{ker}(\varphi) \subseteq E[\ell]$.
Theorem
For every subgroup $H \subset E[\ell]$, there exists an elliptic curve E^{\prime} and a separable isogeny $\varphi: E \rightarrow E^{\prime}$ with $\operatorname{ker}(\varphi)=H$.

Theorem

For E / \mathbb{F}_{q} an elliptic curve, if ℓ is a prime and $\ell \neq p$, then

$$
E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

Exercise: Show that there are $\ell+1$ subgroups of $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ of size ℓ.
Warning! Not every degree ℓ isogeny will be defined over \mathbb{F}_{q}. (It could be over $\mathbb{F}_{q^{2}}, \mathbb{F}_{q^{3}}, \ldots$)

Back to Diffie-Hellman

- Remember: every size ℓ subgroup of $E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ gives a unique (up to isomorphism) elliptic curve $E^{\prime} / \overline{\mathbb{F}_{q}}$ and a unique separable degree- ℓ isogeny $\varphi: E \rightarrow E^{\prime}$.
- Let $P \in E[\ell]$ be order ℓ (so $P \neq \infty$). Then $\langle P\rangle$ is a size ℓ subgroup of $E[\ell]$. Define E_{P} and φ_{P} to be the unique elliptic curve and degree ℓ-isogeny given by $\langle P\rangle$.
- Let $S=\left\{j\left(E_{1}\right), \ldots, j\left(E_{n}\right)\right\}$ be the set of j-invariants of elliptic curves over \mathbb{F}_{q}.
- We need a group G that acts on S as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, j(E)) & \mapsto & a * j(E)
\end{array}
$$

Back to Diffie-Hellman

- Remember: every size ℓ subgroup of $E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ gives a unique (up to isomorphism) elliptic curve $E^{\prime} / \overline{\mathbb{F}_{q}}$ and a unique separable degree- ℓ isogeny $\varphi: E \rightarrow E^{\prime}$.
- Let $P \in E[\ell]$ be order ℓ (so $P \neq \infty$). Then $\langle P\rangle$ is a size ℓ subgroup of $E[\ell]$. Define E_{P} and φ_{P} to be the unique elliptic curve and degree ℓ-isogeny given by $\langle P\rangle$.
- Let $S=\left\{j\left(E_{1}\right), \ldots, j\left(E_{n}\right)\right\}$ be the set of j-invariants of elliptic curves over \mathbb{F}_{q}.
- $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ acts on S as

$$
\begin{array}{ccc}
(\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}) \times S & \longrightarrow & S \\
(P, j(E)) & \mapsto & j\left(E_{P}\right)
\end{array}
$$

What about Alice and Bob?

Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve $E / \overline{\mathbb{F}_{q}}$ and degree ℓ isogeny $\varphi: E \rightarrow E$.

$$
\begin{aligned}
m \varphi\left(P_{A}\right)+n \varphi\left(Q_{A}\right) & =\varphi(R) \\
& =: R
\end{aligned}
$$

$$
\begin{aligned}
m \varphi\left(P_{B}\right)+n \varphi\left(Q_{B}\right) & =\varphi(R) \\
& =: R
\end{aligned}
$$

$$
\varphi: E \rightarrow E
$$

Exercise: prove that $j(E)=j(E)$. This is the shared private key!

How hard is this?

Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve $E / \overline{\mathbb{F}_{q}}$ and degree ℓ isogeny $\varphi: E \rightarrow E$.

- It should be hard to find φ given $E, \varphi\left(P_{B}\right), \varphi\left(Q_{B}\right)$.
- Remember that there are at most $\ell+1$ possible isogenies of degree ℓ.
- How do we increase the possibilities?

Composing isogenies

(This slide has been edited following a comment in the lecture). Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve E and degree ℓ isogeny $\varphi: E \rightarrow E_{P}$.

- There are up to $(\ell+1)^{r}$ possibilities for φ_{A} !

Understanding isogenies V : isogeny graphs

Remember:

- From every elliptic curve E / \mathbb{F}_{q} there are $\ell+1$ possible degree ℓ isogenies, but some of them might only be defined over $\mathbb{F}_{q^{2}}$, $\mathbb{F}_{q^{3}, \ldots}$
- For every degree ℓ-isogeny $\varphi: E \rightarrow E^{\prime}$ there exists a unique degree ℓ-isogeny (called the dual) $\varphi^{\vee}: E^{\prime} \rightarrow E$ such that $\varphi^{\vee} \circ \varphi=[\ell]$.

Definition

An isogeny graph is a graph where a vertex represents the j-invariant of an elliptic curve over \mathbb{F}_{q} and an undirected edge represents a degree ℓ isogeny defined over \mathbb{F}_{q} and its dual.

Understanding isogenies V : isogeny graphs

$p=q=1000003, \ell=2$, graph contains $j(E)=-3$:
$p=431, q=431^{2}, \ell=2$, graph contains $j(E)=0$:

Supersingular curves

- Remember: for a prime $\ell \neq p$, the ℓ-torsion of E / \mathbb{F}_{q} is

$$
\left\{P \in E\left(\overline{\mathbb{F}_{q}}\right): \ell P=\infty\right\} \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

- The q-torsion of E is either
(a) $E[q] \cong \mathbb{Z} / q \mathbb{Z}$ - ' E is ordinary', or
(b) $E[q]=\{\infty\}-$ ' E is supersingular'
- Theorem: every supersingular elliptic curve $E / \overline{\mathbb{F}_{q}}$ is defined over $\mathbb{F}_{p^{2}}$.
- If $p^{2} \mid q$ then all of the $\ell+1$ degree ℓ isogenies from a supersingular elliptic curve E / \mathbb{F}_{q} are defined over \mathbb{F}_{q} !
- Theorem: the degree ℓ isogeny graph with vertices given by the supersingular j-invariants over \mathbb{F}_{q} with $p^{2} \mid q$ is connected, and away from $j=0$ and 1728 , regular of degree $\ell+1$. If $p \equiv 1 \bmod 12$, the graph is Ramanujan.

Ramanujan graphs

$$
p=109, q=109^{2}, \ell=2
$$

- If Γ is a Ramanujan graph, Σ is a subset of Γ, and V is a vertex in Γ, then a 'long enough' random walk from V will land in Σ with probability at least $|\Sigma| / 2|\Gamma|$.

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Random walking on isogeny graphs

$$
p=431, q=431^{2}, \ell=2, \text { graph contains } j(E)=0:
$$

Alice and Bob do SIDH

Remember: The subgroup of $E\left[\ell^{r}\right]$ generated by an order ℓ^{r} point $P \in E\left[\ell^{r}\right]$ defines a unique (up to isomorphism) elliptic curve $E / \overline{\mathbb{F}_{q}}$ and degree ℓ^{r} isogeny $\varphi: E \rightarrow E$.

$$
\begin{aligned}
& E / \mathbb{F}_{q} \text { supersingular, } \\
& P_{A}, Q_{A} \in E\left[\ell^{r}\right], \\
& P_{B}, Q_{B} \in E\left[\ell^{r}\right] \\
& m, n \in \mathbb{Z} / \ell^{r} \mathbb{Z} \\
& R=m P_{A}+n Q_{A} \\
& E, \varphi\left(P_{B}\right), \varphi\left(Q_{B}\right) \\
& \longrightarrow \\
& \varphi: E \rightarrow E \\
& E, \varphi\left(P_{A}\right), \varphi\left(Q_{A}\right) \\
& m, n \in \mathbb{Z} / \ell^{r} \mathbb{Z} \\
& R=m P_{B}+n Q_{B} \\
& \varphi: E \rightarrow E \\
& m \varphi\left(P_{A}\right)+n \varphi\left(Q_{A}\right)=\varphi(R) \\
& =: R \\
& m \varphi\left(P_{B}\right)+n \varphi\left(Q_{B}\right)=\varphi(R) \\
& j(E)=j(E) \\
& =: R \\
& \varphi: E \rightarrow E \\
& \varphi: E \rightarrow E
\end{aligned}
$$

Recap of terms

- An elliptic curve over \mathbb{F}_{q} with $2,3 \nless q$ is given by an equation

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{F}_{q}$ and $4 a^{3}+27 b^{2} \neq 0$.

- There is a group law on elliptic curves where the identity element is called ∞.
- $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q} - this contains all the solutions to every polynomial with coefficients in \mathbb{F}_{q}.
- For $n \in \mathbb{Z}$, the n-torsion $E[n]$ of E is given by

$$
E[n]=\left\{P \in E\left(\overline{\mathbb{F}_{q}}\right): n P=\infty\right\}
$$

- An elliptic curve over \mathbb{F}_{q} is supersingular if

$$
E[q] \cong\{\infty\}
$$

Recap of terms

- An isogeny of elliptic curves is a map that preserves the geometric structure, the group law $(+)$ and the identity (∞).
- The degree of a separable isogeny φ is the size of the kernel, that is,

$$
\operatorname{deg}(\varphi)=\#\left\{P \in E\left(\overline{\mathbb{F}_{p}}\right): \varphi(P)=\infty\right\}
$$

Recap of ideas

- We can think of the setup of classical Diffie-Hellman as a group $G\left(\right.$ e.g. \mathbb{Z} or $\left.\mathbb{F}_{p}^{*}\right)$ acting on a set $S\left(\right.$ e.g. $\left.\mathbb{F}_{p}\right)$ as

$$
\begin{array}{ccc}
G \times S & \longrightarrow & S \\
(a, x) & \mapsto & a * x:=x^{a} .
\end{array}
$$

- We extend the classical Diffie-Hellman idea by using the set

$$
S=\left\{j(E): E / \mathbb{F}_{p^{2}}, E \text { supersingular elliptic curve }\right\}
$$

and the group G acts on S by isogenies of degree ℓ^{r}.

- The supersingular isogeny Diffie-Hellman is 'hard enough' because there are many choices for each isogeny, and the choice is random.
- We analyse the randomness of the choice using isogeny graphs

Recap of supersingular isogeny graphs

Recall:

- A vertex of a supersingular isogeny graph is the j-invariant (isomorphism invariant) of a supersingular elliptic curve.
- An edge of a degree ℓ isogeny graph is a pair of degree ℓ isogenies $\varphi: E \rightarrow E^{\prime}$ and $\varphi^{\vee}: E^{\prime} \rightarrow E$ such that for $P \in E\left(\overline{\mathbb{F}_{q}}\right), \varphi^{\vee}(\varphi(P))=\ell P$.
- Every vertex in a supersingular isogeny graph has $\ell+1$ edges from it.
- A random walk on the graph will give a random vertex after enough steps.
- A path of lenth r represents an isogeny given by the composition of r degree ℓ isogenies.

Bob takes a random walk

- Bob starts with the public elliptic curve E
- Bob decides he will walk 4 steps
- Bob publishes $P_{B}, Q_{B} \in E\left[2^{4}\right]$ (because $\ell=2$)
- Bob chooses random

$$
\begin{aligned}
& m_{1}, n_{1} \in \mathbb{Z} / 2 \mathbb{Z} \text { (because } \\
& \ell=2 \text {) }
\end{aligned}
$$

- Bob computes a secret point $R_{1}=m_{1} P_{B}+n_{1} Q_{B}$ on E

Bob takes a random walk

- Compute the elliptic curve $E_{R_{1}}$ and degree 2 isogeny

$$
E \rightarrow E_{R_{1}}
$$

corresponding to R_{1}

Bob takes a random walk

- Compute the elliptic curve $E_{R_{1}}$ and degree 2 isogeny

$$
E \rightarrow E_{R_{1}}
$$

corresponding to R_{1}

- Compute points

$$
\begin{aligned}
& P_{1}=\varphi_{R_{1}}\left(P_{B}\right) \text { and } \\
& Q_{1}=\varphi_{R_{1}}\left(Q_{B}\right) \text { on } E_{R_{1}} .
\end{aligned}
$$

Bob takes a random walk

- Bob is now standing at supersingular elliptic curve $E_{R_{1}}$
- Choose random $m_{2}, n_{2} \in \mathbb{Z} / 2 \mathbb{Z}$ (because $\ell=2$)
- Compute secret point $R_{2}=m_{2} P_{1}+n_{2} Q_{1}$ on $E_{R_{1}}$

Bob takes a random walk

- Compute the elliptic curve $E_{R_{2}}$ and degree 2 isogeny

$$
E_{R_{1}} \rightarrow E_{R_{2}}
$$

corresponding to R_{2}

- Compute points

$$
P_{2}=\varphi_{R_{2}}\left(P_{1}\right) \text { and }
$$

$$
Q_{2}=\varphi_{R_{2}}\left(Q_{1}\right) \text { on } E_{R_{2}}
$$

Bob takes a random walk

- Bob is now standing at supersingular elliptic curve $E_{R_{2}}$
- Choose random $m_{3}, n_{3} \in \mathbb{Z} / 2 \mathbb{Z}$ (because $\ell=2$)
- Compute secret point $R_{3}=m_{3} P_{2}+n_{3} Q_{2}$ on $E_{R_{2}}$

Bob takes a random walk

- Compute the elliptic curve $E_{R_{3}}$ and degree 2 isogeny

$$
E_{R_{2}} \rightarrow E_{R_{3}}
$$

corresponding to R_{3}

- Compute points

$$
P_{3}=\varphi_{R_{3}}\left(P_{2}\right) \text { and }
$$

$$
Q_{3}=\varphi_{R_{3}}\left(Q_{2}\right) \text { on } E_{R_{3}} .
$$

Bob takes a random walk

- Bob is now standing at supersingular elliptic curve $E_{R_{3}}$
- Choose random $m_{4}, n_{4} \in \mathbb{Z} / 2 \mathbb{Z}$ (because $\ell=2$)
- Compute secret point $R_{4}=m_{4} P_{3}+n_{4} Q_{3}$ on $E_{R_{3}}$

Bob takes a random walk

- Compute the elliptic curve $E_{R_{4}}$ and degree 2 isogeny

$$
E_{R_{3}} \rightarrow E_{R_{4}}
$$

corresponding to R_{4}

- You have reached you destination! (Remember that Bob chose to walk 4 steps).

Bob takes a random walk

- Compute

$$
\varphi_{B}:=\varphi_{R_{4}} \circ \varphi_{R_{3}} \circ \varphi_{R_{2}} \circ \varphi_{R_{1}}
$$

so that

$$
\varphi_{B}: E \longrightarrow E_{R_{4}} .
$$

- Look up Alice's public points P_{A} and Q_{A} and send her

$$
\varphi_{B}\left(P_{A}\right) \text { and } \varphi_{B}\left(Q_{A}\right)
$$

Alice and Bob do SIDH

Remember: The subgroup of $E\left[\ell^{r}\right]$ generated by an order ℓ^{r} point $P \in E\left[\ell^{r}\right]$ defines a unique (up to isomorphism) elliptic curve $E / \overline{\mathbb{F}_{q}}$ and degree ℓ^{r} isogeny $\varphi: E \rightarrow E$.

$$
\begin{aligned}
& E / \mathbb{F}_{q} \text { supersingular, } \\
& P_{A}, Q_{A} \in E\left[\ell^{r}\right], \\
& P_{B}, Q_{B} \in E\left[\ell^{r}\right] \\
& m, n \in \mathbb{Z} / \ell^{r} \mathbb{Z} \\
& R=m P_{A}+n Q_{A} \\
& E, \varphi\left(P_{B}\right), \varphi\left(Q_{B}\right) \\
& \longrightarrow \\
& \varphi: E \rightarrow E \\
& E, \varphi\left(P_{A}\right), \varphi\left(Q_{A}\right) \\
& m, n \in \mathbb{Z} / \ell^{r} \mathbb{Z} \\
& R=m P_{B}+n Q_{B} \\
& \varphi: E \rightarrow E \\
& m \varphi\left(P_{A}\right)+n \varphi\left(Q_{A}\right)=\varphi(R) \\
& =: R \\
& m \varphi\left(P_{B}\right)+n \varphi\left(Q_{B}\right)=\varphi(R) \\
& j(E)=j(E) \\
& =: R \\
& \varphi: E \rightarrow E \\
& \varphi: E \rightarrow E
\end{aligned}
$$

Bonus: how random is SIDH?

Remember:

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\left\{P \in E\left(\overline{\mathbb{F}_{q}}\right): \varphi(P)=\infty\right\} \\
& =\langle R\rangle \\
& \cong \mathbb{Z} / \ell^{r} \mathbb{Z}
\end{aligned}
$$

$$
R=m P_{B}+n Q_{B}
$$

$\varphi: E \rightarrow E$.

- A truly random isogeny from a random path in a supersingular isogeny graph

$$
\varphi_{B}=\varphi_{R_{1}} \circ \varphi_{R_{2}} \circ \cdots \circ \varphi_{R_{r}}
$$

will have $\# \operatorname{ker}\left(\varphi_{B}\right)=\ell^{r}$ but maybe not $\cong \mathbb{Z} / \ell^{r} \mathbb{Z}$!

- Exercise: which other situations are there?

Computing random paths in isogeny graphs

Remember: Each size ℓ subgroup of $E[\ell]$ defines a unique (up to isomorphism) degree ℓ isogeny from E.

- Vélu's algorithm: given a size ℓ subgroup H of $E[\ell]$, computes the isogeny and the elliptic curve corresponding to H.
- Can compute a random path of length r by choosing a random size ℓ subgroup at each step and using Vélu r times to find $\varphi_{R_{1}}, \varphi_{R_{2}}, \ldots, \varphi_{R_{r}}$. (Like 'Bob goes for a walk').
- More efficient (but maybe less secure): choose a random subgroup of $E\left[\ell^{r}\right]$ that is isomorphic to $\mathbb{Z} / \ell^{r} \mathbb{Z}$ and use Vélu once to compute φ_{B}. (Like 'Alice and Bob do SIDH').

Computing random paths in isogeny graphs

- Alternative to Vélu's algorithm: use modular polynomials

Definition

The modular polynomial of level ℓ is a symmetric polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ of degree $\ell+1$ in both X and Y such that for all (non- ℓ) prime powers q there exists a degree ℓ isogeny $E \rightarrow E^{\prime}$ if and only if $\overline{\Phi_{\ell}(X, Y)} \in \mathbb{F}_{q}[X, Y]$ satisfies $\overline{\Phi_{\ell}}\left(j(E), j\left(E^{\prime}\right)\right)=0$.

- Neighbours of $j(E)$ in the ℓ-isogeny graph are the roots of $\overline{\Phi_{\ell}(j(E), Y)}$.
- Elkie's has an algorithm to compute the isogeny $E \rightarrow E^{\prime}$ and its kernel (if they exist) given $j(E)$ and $j\left(E^{\prime}\right)$.
- Compute a random path of length r in a degree ℓ supersingular isogeny graph starting at E using $\Phi_{\ell}(X, Y)$.

Finding a random curve with modular polynomials

Finding a random curve with modular polynomials

Edit: walking back is allowed in a random walk, but is not allowed in the SIDH protocol as this will give a final isogeny with non-cyclic kernel.

Finding a random curve with modular polynomials

Attacks on SIDH: Galbraith et. al. 2016

1. Attack in the case that Alice and Bob do not change their private keys $m_{A}, n_{A} \in \mathbb{Z} / \ell_{A} \mathbb{Z}$ and $m_{B}, n_{B} \in \mathbb{Z} / \ell_{B} \mathbb{Z}$.

- This attack recovers the full private key in $O(r)$ steps.
- The only known validation methods that prevent this are very costly.

2. Number theoretic attack in time $\log (\sqrt{q})$ (currently unfeasible due to lack of theory).

- Relies on an efficient algorithm to compute 'endomorphism rings'.

3. Full break if the shared secret is partially leaked. (Edit: if you are watching the video, there was a comment from the audience saying that this is too generous, but following further discussion we concluded that it does in fact give a full break).

Potential attack on SIDH: Petit June 2017

- Constructs variations of SIDH which can be broken by exploiting $\phi_{A}\left(P_{B}\right)$ and $\phi_{A}\left(P_{B}\right)$.
- Does not (yet) apply to the current version of SIDH.

Where are we now with SIDH?

- Detailed cryptoanalysis needed to assess security
- Assuming the system is chosen to be secure against known attacks, best classical algorithm to find shared secret (based on finding an isogeny between 2 curves) is $O\left(p^{1 / 4}\right)$ for elliptic curves over $\mathbb{F}_{p^{2}}$
- Best quantum attack is $O\left(p^{1 / 6}\right)$
- Galbraith has an attack exploiting reused secret key pairs (m and n)
- Christophe Petit studies how to exploit the additional points $\varphi\left(P_{A}\right), \varphi\left(P_{B}\right)$ - but his methods do not (yet) give an attack on SIDH
- ...

SIDH vs. Lattice based crypto

Name	Primitive	Time (ms)	PK size (bytes)
Frodo	LWE	2.600	11,300
NewHope	R-LWE	0.310	1,792
NTRU	NTRU	2.429	1,024
SIDH	Supersingular Isogeny	900	564

These are non-optimised timings!

Bibliography

- De Feo, Jao, Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies (2011)
- Galbraith et. al., On the security of supersingular isogeny cryptosystems (2016)
- Petit, Faster algorithms for isogeny problems using torsion point images (last week)

