An introduction to isogeny-based crypto

Chloe Martindale

Technische Universiteit Eindhoven PQCrypto Summer School 2017

July 3, 2017

- Let S be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that *acts* on S as

$$\begin{array}{cccc} G \times S & \longrightarrow & S \\ (a,x) & \mapsto & a * x \end{array}$$

- Let S be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that *acts* on \mathbb{F}_p as

$$\begin{array}{cccc} \mathbb{Z} \times \mathbb{F}_p & \longrightarrow & \mathbb{F}_p \\ (a, x) & \mapsto & x^a \end{array}$$

- Let S be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that acts on $E(\mathbb{F}_p)$ as

$$\begin{array}{cccc} \mathbb{Z} \times E(\mathbb{F}_p) & \longrightarrow & E(\mathbb{F}_p) \\ (n, P) & \mapsto & nP \end{array}$$

Diffie-Hellman key exchange

- Let S be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that *acts* on S as

$$\begin{array}{cccc} G \times S & \longrightarrow & S \\ (a, x) & \mapsto & a * x \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Diffie-Hellman key exchange

- Let **S** be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that *acts* on S as

$$\begin{array}{cccc} G \times S & \longrightarrow & S \\ (a, x) & \mapsto & a * x \end{array}$$

$$\blacktriangleright k = a*(b*x) = b*(a*x)$$

▶ Finding *a* or *b* given *x*, *a***x*, and *b***x* should be *hard*!

Quantum-hard Diffie-Hellman

- ► Classical Diffie-Hellman: S = F_p and G = Z with (a, x) → x^a is not hard enough with a quantum computer.
- ▶ Elliptic Curve Diffie-Hellman: $S = E(\mathbb{F}_p)$ and $G = \mathbb{Z}$ with $(n, P) \mapsto nP$ is not hard enough with a quantum computer.
- Supersingular Isogeny Diffie-Hellman has a chance of being quantum secure! What is it?

Definition

Let q be a prime power such that 2,3 $\not|q$. We define an elliptic curve over \mathbb{F}_q to be a curve of the form

$$y^2 = x^3 + ax + b,$$

where *a* and *b* are elements of \mathbb{F}_q and $4a^3 + 27b^2 \neq 0$.

Elliptic Curves

Definition

Let q be a prime power such that 2,3 $\not|q$. We define an elliptic curve over \mathbb{F}_q to be a curve of the form

$$y^2 = x^3 + ax + b,$$

where *a* and *b* are elements of \mathbb{F}_q and $4a^3 + 27b^2 \neq 0$.

Elliptic Curves

Definition

Let q be a prime power such that 2,3 $/\!\!/q$. We define an elliptic curve over \mathbb{F}_q to be a curve of the form

$$y^2 = x^3 + ax + b,$$

where a and b are elements of \mathbb{F}_q and $4a^3 + 27b^2 \neq 0$.

Definition

The *j*-invariant of an elliptic curve $E : y^2 = x^3 + ax + b$ is given by

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

This defines *E* up to $\overline{\mathbb{F}_q}$ -isomorphism.

Elliptic Curves

The *j*-invariant of an elliptic curve $E : y^2 = x^3 + ax + b$ is given by

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Example

Define

$$E/\mathbb{F}_{11}: y^2 = x^3 + x + 1.$$

Then $j(E) = 1728\frac{4}{31} \equiv 9$. Try the isomorphism $(x, y) \mapsto (4x, 8y)$:

$$(8y)^2 = (4x)^3 + 4x + 1$$

Divide by 64:

$$E'/\mathbb{F}_{11}: y^2 = x^3 + 9x + 5.$$

 $j(E') = 1728 \frac{4 \cdot 9^3}{4 \cdot 9^3 + 27 \cdot 5^2} \equiv 9.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Back to Diffie-Hellman

- Let **S** be a set (e.g. \mathbb{F}_p or $E(\mathbb{F}_p)$).
- Let G be a group (e.g. \mathbb{Z}) that *acts* on S as

$$\begin{array}{cccc} G \times S & \longrightarrow & S \\ (a, x) & \mapsto & a * x \end{array}$$

 $\begin{array}{c} x \\ a \ast x \\ \longrightarrow \\ b \ast x \end{array}$

b b*(a*x)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Let S = {j(E₁),...,j(E_n)} be the set of *j*-invariants of elliptic curves over 𝔽_q.
- We need a group G that acts on S as

$$\begin{array}{ccc} G \times S & \longrightarrow & S \\ (a,j(E)) & \mapsto & a * j(E) \end{array}$$

Definition

An *isogeny* of elliptic curves over \mathbb{F}_q is a non-zero morphism $E \to E'$ that preserves the identity. It is given by rational maps.

Understanding isogenies II: examples

An *isogeny* of elliptic curves over \mathbb{F}_q is a non-zero morphism $E \to E'$ that preserves the identity. It is given by rational maps. (A morphism is a map of curves that preserves the group law).

Understanding isogenies II: examples

The top isogeny is

$$(x,y) \mapsto ((x^3+4)/x^2, (x^3y-8y)/x^3).$$

- ▶ Define the curves over F₁₇. Then it is '3:1' (and surjective), so for every F₁₇-point on the green curve there are 3 F₁₇-points on the blue curve which map to it.
- Exercise: which 3 points on the blue curve map to (3,0)?
- Sanity check: j(E) = 0, j(E) = 1, j(E) = 0. Exercise: check that E and E are isomorphic over 𝔽₁₇₂ but not over 𝔽₁₇.

Understanding isogenies III: useful facts

If a (separable) isogeny φ has kernel of size ℓ (so φ is ℓ : 1) the *degree* of φ is ℓ.

Write

for the multiplication-by- ℓ map on E.

For every isogeny φ : E → E', of degree n, there exists a dual isogeny φ[∨] : E' → E of degree ℓ such that φ[∨] ∘ φ = [ℓ]. That is, for every P ∈ E(F_p),

$$\varphi^{\vee}(\varphi(P)) = \ell P.$$

▶ For $P \in E(\overline{\mathbb{F}_q})$, if $\varphi(P) = \infty$, then $\ell P = \infty$, so

$$\ker(\varphi) \subseteq \ker([\ell]) =: E[\ell].$$

Understanding isogenies IV: counting the possibilities

Remember: if $\varphi : E \to E'$ is a separable isogeny and $\# \ker(\varphi) = \ell$, then $\ker(\varphi) \subseteq E[\ell]$.

Theorem

For every subgroup $H \subset E[\ell]$, there exists an elliptic curve E' and a separable isogeny $\varphi : E \to E'$ with ker $(\varphi) = H$.

Theorem

For E/\mathbb{F}_q an elliptic curve, if ℓ is a prime and $\ell \neq p$, then

 $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}.$

Exercise: Show that there are $\ell+1$ subgroups of $\mathbb{Z}/\ell\mathbb{Z}\times\mathbb{Z}/\ell\mathbb{Z}$ of size $\ell.$

Warning! Not every degree ℓ isogeny will be defined over \mathbb{F}_q . (It could be over \mathbb{F}_{q^2} , \mathbb{F}_{q^3} ,...)

Back to Diffie-Hellman

- Remember: every size ℓ subgroup of E[ℓ] ≃ Z/ℓZ × Z/ℓZ gives a unique (up to isomorphism) elliptic curve E'/F_q and a unique separable degree-ℓ isogeny φ : E → E'.
- Let P ∈ E[ℓ] be order ℓ (so P ≠ ∞). Then ⟨P⟩ is a size ℓ subgroup of E[ℓ]. Define E_P and φ_P to be the unique elliptic curve and degree ℓ-isogeny given by ⟨P⟩.
- Let S = {j(E₁),...,j(E_n)} be the set of *j*-invariants of elliptic curves over 𝔽_q.
- We need a group G that acts on S as

$$\begin{array}{ccc} G imes S & \longrightarrow & S \ (a,j(E)) & \mapsto & a * j(E) \end{array}$$

Back to Diffie-Hellman

- Remember: every size ℓ subgroup of E[ℓ] ≅ Z/ℓZ × Z/ℓZ gives a unique (up to isomorphism) elliptic curve E'/F_q and a unique separable degree-ℓ isogeny φ : E → E'.
- Let P ∈ E[ℓ] be order ℓ (so P ≠ ∞). Then ⟨P⟩ is a size ℓ subgroup of E[ℓ]. Define E_P and φ_P to be the unique elliptic curve and degree ℓ-isogeny given by ⟨P⟩.
- Let S = {j(E₁),...,j(E_n)} be the set of *j*-invariants of elliptic curves over 𝔽_q.
- $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ acts on *S* as

$$\begin{array}{cccc} (\mathbb{Z}/\ell\mathbb{Z}\times\mathbb{Z}/\ell\mathbb{Z})\times S &\longrightarrow & S\\ (P,j(E)) &\mapsto & j(E_P). \end{array}$$

What about Alice and Bob?

Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve $E/\overline{\mathbb{F}_q}$ and degree ℓ isogeny $\varphi : E \to E$.

How hard is this?

Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve $E/\overline{\mathbb{F}_q}$ and degree ℓ isogeny $\varphi : E \to E$.

- It should be hard to find φ given E, $\varphi(P_B)$, $\varphi(Q_B)$.
- ► Remember that there are at most l + 1 possible isogenies of degree l.

How do we increase the possibilities?

Composing isogenies

(This slide has been edited following a comment in the lecture). Remember: The subgroup of $E[\ell]$ generated by an order ℓ point $P \in E[\ell]$ defines a unique (up to isomorphism) elliptic curve E and degree ℓ isogeny $\varphi : E \to E_P$.

Understanding isogenies V: isogeny graphs

Remember:

- From every elliptic curve E/𝔽_q there are ℓ + 1 possible degree ℓ isogenies, but some of them might only be defined over 𝔽_{q²}, 𝔽_{q³},...
- For every degree ℓ-isogeny φ : E → E' there exists a unique degree ℓ-isogeny (called the dual) φ[∨] : E' → E such that φ[∨] ∘ φ = [ℓ].

Definition

An *isogeny graph* is a graph where a vertex represents the *j*-invariant of an elliptic curve over \mathbb{F}_q and an undirected edge represents a degree ℓ isogeny defined over \mathbb{F}_q and its dual.

Understanding isogenies V: isogeny graphs

p = q = 1000003, $\ell = 2$, graph contains j(E) = -3:

 $p = 431, q = 431^2, \ell = 2, \text{ graph}$ contains j(E) = 0:

イロト イポト イヨト イヨト

-

Supersingular curves

▶ Remember: for a prime $\ell \neq p$, the ℓ -torsion of E/\mathbb{F}_q is

$$\{P \in E(\overline{\mathbb{F}_q}) : \ell P = \infty\} \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$$

- The q-torsion of E is either
 - (a) $E[q] \cong \mathbb{Z}/q\mathbb{Z}$ 'E is ordinary', or
 - (b) $E[q] = \{\infty\}$ '*E* is supersingular'
- ► Theorem: every supersingular elliptic curve E/F_q is defined over F_{p²}.
- If p²|q then all of the ℓ + 1 degree ℓ isogenies from a supersingular elliptic curve E/ℝ_q are defined over ℝ_q!
- Theorem: the degree ℓ isogeny graph with vertices given by the supersingular *j*-invariants over 𝔽_q with p²|q is connected, and away from *j* = 0 and 1728, regular of degree ℓ + 1. If p ≡ 1 mod 12, the graph is Ramanujan.

Ramanujan graphs

If Γ is a Ramanujan graph, Σ is a subset of Γ, and V is a vertex in Γ, then a 'long enough' random walk from V will land in Σ with probability at least |Σ|/2|Γ|.

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$p = 431, q = 431^2, \ell = 2$$
, graph contains $j(E) = 0$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Alice and Bob do SIDH

Remember: The subgroup of $E[\ell^r]$ generated by an order ℓ^r point $P \in E[\ell^r]$ defines a unique (up to isomorphism) elliptic curve $E/\overline{\mathbb{F}_q}$ and degree ℓ^r isogeny $\varphi: E \to E$.

Recap of terms

• An *elliptic curve* over \mathbb{F}_q with 2,3 /q is given by an equation

$$y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$.

- ► There is a group law on elliptic curves where the identity element is called ∞.
- ▶ F_q is the algebraic closure of F_q this contains all the solutions to every polynomial with coefficients in F_q.
- ▶ For $n \in \mathbb{Z}$, the *n*-torsion E[n] of *E* is given by

$$E[n] = \{P \in E(\overline{\mathbb{F}_q}) : nP = \infty\}.$$

• An elliptic curve over \mathbb{F}_q is supersingular if

$$E[q] \cong \{\infty\}.$$

- An *isogeny* of elliptic curves is a map that preserves the geometric structure, the group law (+) and the identity (∞).
- The degree of a separable isogeny φ is the size of the kernel, that is,

$$\deg(\varphi) = \#\{P \in E(\overline{\mathbb{F}_{P}}) : \varphi(P) = \infty\}.$$

Recap of ideas

We can think of the setup of classical Diffie-Hellman as a group G (e.g. Z or F^{*}_p) acting on a set S (e.g. F_p) as

$$\begin{array}{cccc} G \times S & \longrightarrow & S \\ (a, x) & \mapsto & a \ast x := x^a \end{array}$$

We extend the classical Diffie-Hellman idea by using the set

 $S = \{j(E) : E/\mathbb{F}_{p^2}, E \text{ supersingular elliptic curve}\},\$

and the group G acts on S by isogenies of degree ℓ^r .

- The supersingular isogeny Diffie-Hellman is 'hard enough' because there are many choices for each isogeny, and the choice is random.
- We analyse the randomness of the choice using isogeny graphs

Recap of supersingular isogeny graphs

Recall:

- A vertex of a supersingular isogeny graph is the *j*-invariant (isomorphism invariant) of a supersingular elliptic curve.
- An edge of a degree ℓ isogeny graph is a pair of degree ℓ isogenies φ : E → E' and φ[∨] : E' → E such that for P ∈ E(F_q), φ[∨](φ(P)) = ℓP.
- ► Every vertex in a supersingular isogeny graph has ℓ + 1 edges from it.
- A random walk on the graph will give a random vertex after enough steps.

► A path of lenth r represents an isogeny given by the composition of r degree ℓ isogenies.

- Bob starts with the public elliptic curve E
- Bob decides he will walk 4 steps
- ▶ Bob publishes $P_B, Q_B \in E[2^4]$ (because $\ell = 2$)
- Bob chooses random m₁, n₁ ∈ ℤ/2ℤ (because ℓ = 2)
- Bob computes a secret point $R_1 = m_1 P_B + n_1 Q_B$ on E

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Compute the elliptic curve
 E_{R1} and degree 2 isogeny

 $E \rightarrow E_{R_1}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

corresponding to R_1

Compute the elliptic curve
 E_{R1} and degree 2 isogeny

 $E \rightarrow E_{R_1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

corresponding to R_1

• Compute points $P_1 = \varphi_{R_1}(P_B)$ and $Q_1 = \varphi_{R_1}(Q_B)$ on E_{R_1} .

- Bob is now standing at supersingular elliptic curve *E_{R1}*
- Choose random
 m₂, n₂ ∈ Z/2Z (because ℓ = 2)
- Compute secret point $R_2 = m_2 P_1 + n_2 Q_1$ on E_{R_1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compute the elliptic curve
 E_{R₂} and degree 2 isogeny

 $E_{R_1} \rightarrow E_{R_2}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

corresponding to R_2

• Compute points $P_2 = \varphi_{R_2}(P_1)$ and $Q_2 = \varphi_{R_2}(Q_1)$ on E_{R_2} .

- Bob is now standing at supersingular elliptic curve E_{R2}
- Choose random
 m₃, n₃ ∈ Z/2Z (because
 ℓ = 2)
- Compute secret point $R_3 = m_3 P_2 + n_3 Q_2$ on E_{R_2}

Compute the elliptic curve
 E_{R₃} and degree 2 isogeny

 $E_{R_2} \rightarrow E_{R_3}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

corresponding to R_3

• Compute points $P_3 = \varphi_{R_3}(P_2)$ and $Q_3 = \varphi_{R_3}(Q_2)$ on E_{R_3} .

- Bob is now standing at supersingular elliptic curve *E_{R₃}*
- Choose random
 m₄, n₄ ∈ Z/2Z (because
 ℓ = 2)
- Compute secret point $R_4 = m_4 P_3 + n_4 Q_3$ on E_{R_3}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Compute the elliptic curve *E*_{R4} and degree 2 isogeny

 $E_{R_3} \rightarrow E_{R_4}$

corresponding to R_4

 You have reached you destination! (Remember that Bob chose to walk 4 steps).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compute

 $\varphi_{\mathcal{B}} := \varphi_{\mathcal{R}_4} \circ \varphi_{\mathcal{R}_3} \circ \varphi_{\mathcal{R}_2} \circ \varphi_{\mathcal{R}_1}$

so that

$$\varphi_B: E \longrightarrow E_{R_4}.$$

Look up Alice's public points
 P_A and Q_A and send her

 $\varphi_B(P_A)$ and $\varphi_B(Q_A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Alice and Bob do SIDH

Remember: The subgroup of $E[\ell^r]$ generated by an order ℓ^r point $P \in E[\ell^r]$ defines a unique (up to isomorphism) elliptic curve $E/\overline{\mathbb{F}_q}$ and degree ℓ^r isogeny $\varphi: E \to E$.

Bonus: how random is SIDH?

Remember:

$$\operatorname{ker}(\varphi) = \{P \in E(\overline{\mathbb{F}_q}) : \varphi(P) = \infty\}$$
$$= \langle R \rangle$$
$$\cong \mathbb{Z}/\ell^r \mathbb{Z}.$$

 $m, n \in \mathbb{Z}/\ell^r \mathbb{Z}$

 $\mathbf{R} = \mathbf{m} \mathbf{P}_B + \mathbf{n} \mathbf{Q}_B$

 $\varphi: E \to E$.

 A truly random isogeny from a random path in a supersingular isogeny graph

$$\varphi_B = \varphi_{R_1} \circ \varphi_{R_2} \circ \cdots \circ \varphi_{R_r}$$

will have $\# \ker(\varphi_B) = \ell^r$ but maybe not $\cong \mathbb{Z}/\ell^r \mathbb{Z}!$

Exercise: which other situations are there?

Remember: Each size ℓ subgroup of $E[\ell]$ defines a unique (up to isomorphism) degree ℓ isogeny from E.

- ► Vélu's algorithm: given a size ℓ subgroup H of E[ℓ], computes the isogeny and the elliptic curve corresponding to H.
- Can compute a random path of length r by choosing a random size ℓ subgroup at each step and using Vélu r times to find φ_{R1}, φ_{R2}, ..., φ_{Rr}. (Like 'Bob goes for a walk').
- More efficient (but maybe less secure): choose a random subgroup of E[ℓ^r] that is isomorphic to Z/ℓ^rZ and use Vélu once to compute φ_B. (Like 'Alice and Bob do SIDH').

Computing random paths in isogeny graphs

Alternative to Vélu's algorithm: use modular polynomials

Definition

The modular polynomial of level ℓ is a symmetric polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ of degree $\ell + 1$ in both X and Y such that for all (non- ℓ) prime powers q there exists a degree ℓ isogeny $E \to E'$ if and only if $\overline{\Phi_{\ell}(X, Y)} \in \mathbb{F}_q[X, Y]$ satisfies $\overline{\Phi_{\ell}(j(E), j(E'))} = 0$.

- Neighbours of j(E) in the ℓ -isogeny graph are the roots of $\overline{\Phi_{\ell}(j(E), Y)}$.
- ▶ Elkie's has an algorithm to compute the isogeny $E \rightarrow E'$ and its kernel (if they exist) given j(E) and j(E').
- Compute a random path of length r in a degree supersingular isogeny graph starting at E using Φ_ℓ(X, Y).

Edit: walking back is allowed in a random walk, but is not allowed in the SIDH protocol as this will give a final isogeny with non-cyclic kernel.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Attacks on SIDH: Galbraith et. al. 2016

- 1. Attack in the case that Alice and Bob do not change their private keys $m_A, n_A \in \mathbb{Z}/\ell_A\mathbb{Z}$ and $m_B, n_B \in \mathbb{Z}/\ell_B\mathbb{Z}$.
 - This attack recovers the full private key in O(r) steps.
 - The only known validation methods that prevent this are very costly.
- 2. Number theoretic attack in time $\log(\sqrt{q})$ (currently unfeasible due to lack of theory).
 - Relies on an efficient algorithm to compute 'endomorphism rings'.
- 3. Full break if the shared secret is partially leaked. (Edit: if you are watching the video, there was a comment from the audience saying that this is too generous, but following further discussion we concluded that it does in fact give a full break).

Potential attack on SIDH: Petit June 2017

- ► Constructs variations of SIDH which can be broken by exploiting φ_A(P_B) and φ_A(P_B).
- Does not (yet) apply to the current version of SIDH.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where are we now with SIDH?

- Detailed cryptoanalysis needed to assess security
- ► Assuming the system is chosen to be secure against known attacks, best classical algorithm to find shared secret (based on finding an isogeny between 2 curves) is O(p^{1/4}) for elliptic curves over F_{p²}
- Best quantum attack is $O(p^{1/6})$
- Galbraith has an attack exploiting reused secret key pairs (m and n)
- Christophe Petit studies how to exploit the additional points φ(P_A), φ(P_B) - but his methods do not (yet) give an attack on SIDH

• • • •

Name	Primitive	Time (ms)	PK size (bytes)
Frodo	LWE	2.600	11,300
NewHope	R-LWE	0.310	1,792
NTRU	NTRU	2.429	1,024
SIDH	Supersingular	900	564
	Isogeny		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

These are non-optimised timings!

- De Feo, Jao, Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies (2011)
- Galbraith et. al., On the security of supersingular isogeny cryptosystems (2016)
- Petit, Faster algorithms for isogeny problems using torsion point images (last week)