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Reminder: Construction of MPKCs

Easily invertible quadratic map F : Fn → Fm (central map)
Two invertible linear maps S : Fm → Fm and T : Fn → Fn

Public key: P = S ◦ F ◦ T supposed to look like a random system
Private key: S, F , T allows to invert the public key
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Workflow

Decryption / Signature Generation

w ∈ Fm -S−1
x ∈ Fm -F−1

y ∈ Fn -T −1
z ∈ Fn

6

P

Encryption / Signature Verification
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Big Field Schemes

Central map F is defined over a degree n extension field E of F
F̄ = Φ−1 ◦ F ◦ Φ : Fn → Fn quadratic

Decryption / Signature Generation

w ∈ Fn - x ∈ Fn - y ∈ Fn - z ∈ Fn

6

P

S−1 F̄−1 T −1

Encryption / Signature Verification

X ∈ E Y ∈ E-F−1

6

Φ
?

Φ−1
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Extension Fields

Fq: finite field with q elements
g(X ) irreducible polynomial in F[X ] of degree n
⇒ Fqn ∼= F[X ]/〈g(X )〉 finite field with qn elements
isomorphism φ : Fn

q → Fqn , (a1, . . . , an) 7→
∑n

i=1 ai · X i−1

Addition in Fqn : Addition in Fq[X ]
Multiplication in Fqn : Multiplication in Fq[X ] modulo g(X )
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Example: The field GF(22)

Start with the field F2 = {0, 1} of two elements
Choose an irreducible polynomial g(X ) of degree 2 in F2[X ], i.e.
g(X ) = X 2 + X + 1

⇒ F22 ∼= F2[X ]/〈X 2 + X + 1〉 = {0, 1,X ,X + 1}
∼= {0, 1,w ,w2} for a root w of g(X )

+ 0 1 w w2

0 0 1 w w2

1 1 0 w2 w
w w w2 0 1
w2 w2 w 1 0

× 0 1 w w2

0 0 0 0 0
1 0 1 w w2

w 0 w w2 1
w2 0 w2 1 w

A. Petzoldt Multivariate Cryptography PQCrypto Summer School 6 / 53



The HFE Cryptosystem [Pa96]

“ Hidden Field Equations”
proposed by Patarin in 1995
BigField Scheme
can be used both for encryption and signatures
finite field F, extension field E of degree n, isomorphism Φ : Fn → E
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HFE - Key Generation

central map F : E→ E,

F(X ) =
qi +qj≤D∑

0≤i≤j
αijXqi +qj +

qi≤D∑
i=0

βi · Xqi + γ

⇒ F̄ = Φ−1 ◦ F ◦ Φ : Fn → Fn quadratic
degree bound D needed for efficient decryption / signature generation
linear maps S, T : Fn → Fn

public key: P = S ◦ F̄ ◦ T : Fn → Fn

private key: S, F , T
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Encryption

Given: message (plaintext) z ∈ Fn

Compute ciphertext w ∈ Fn by w = P(z).
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Decryption

Given: ciphertext w ∈ Fn

1 Compute x = S−1(w) ∈ Fn and X = Φ(x) ∈ E
2 Solve F(Y ) = X over E via Berlekamp’s algorithm
3 Compute y = Φ−1(Y ) ∈ Fn and z = T −1(y)

Plaintext: z ∈ Fn.
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Remark

HFE central map is not bijective

⇒ Decryption process does not neccessarily produce unique solution

⇒ Use redundancy in the plaintext
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Signature Generation

Given: message d
1 Use hash function H : {0, 1}? → Fn to compute w = H(d)
2 Compute x = S−1(w) ∈ Fn and X = Φ(x) ∈ E
3 Solve F(Y ) = X over E via Berlekamp’s algorithm
4 Compute y = Φ−1(Y ) ∈ Fn and z = T −1(y)

Signature: z ∈ Fn.
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Signature Verification

Given: signature z ∈ Fn, message d
Compute w = H(d) ∈ Fn

Compute w′ = P(z) ∈ Fn

Accept the signature z ⇔ w′ = w.
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Remark

HFE central map is not bijective

⇒ Signature generation process does not output a signature for every
input message

⇒ Append a counter to the message d
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The Attack of Kipnis and Shamir [KS99]
Idea: Look at the scheme over the extemsion field E

the linear maps S and T relate to univariate maps
S?(X ) =

∑n−1
i=1 si · Xqi amd T ?(X ) =

∑n−1
i=1 ti · Xqi with (unknown)

coefficients si and ti ∈ E.
the public key P? can be expressed as

P?(X ) =
n−1∑
i=0

n−1∑
j=0

p?
ijXqi +qj = X · P? · XT ,

where P? = [p?
ij ] and X = (Xq0

,Xq1
, . . . ,Xqn−1) .

The components of the matrix P? can be found by polynomial
interpolation.
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The attack of Kipnis and Shamir (2)

the relation P?(X ) = S? ◦ F ◦ T ?(X ) yields
(S?)−1 ◦ P?(X ) = F ◦ T ?(X ) and

P̃ =
n−1∑
k=0

sk · G?k = W · F ·W T

with g? k
ij = (p?

i−k mod n,j−k mod n)qk , wij = sqi

j−i mod n.

We know that F has the form F =
(
? 0
0 0

)
.

⇒ Rank(F ) ≤ r with r = blogq D − 1c+ 1.
⇒ Rank(W · F ·W T ) ≤ r
⇒ We can recover the coefficients sk by solving a MinRank problem
over the extension field E.
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MinRank attack on HFE

Computing the map P? is very costly
⇒ The attack of Kipnis and Shamir is not very efficient.
Work of Bettale et al: Perform the MinRank attack without
recovering P? ⇒ HFE can be broken by using a MinRank problem
over the base field F.

ComplexityMinRank =
(

n + r
r

)ω

with 2 < ω ≤ 3 and r = blogq(D − 1)c+ 1.
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Direct Attacks

Experiments: Public Systems of HFE can be solved much faster than
random systems
Theoretical Explanation: Upper bound for dreg

dreg ≤
{ (q−1)·(r−1)

2 + 2 q even and r odd,
(q−1)·r

2 + 2 otherwise.
,

with r = blogq(D − 1)c+ 1.

⇒ Basic version of HFE is not secure
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HFE Variants

Encryption Schemes
IPHFE+ (not very efficient)
ZHFE ( → this conference)
HFE- (for small minus parameter; → this conference)

Signature Schemes
HFEv-, Gui
MHFEv (→ this conference)
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HFEv- - Key Generation

finite field F, extension field E of degree n, isomorphism Φ : Fn → E
central map F : Fv × E→ E,

F(X ) =
qi +qj≤D∑

0≤i≤j
αijXqi +qj +

qi≤D∑
i=0

βi (v1, . . . , vv ) · Xqi + γ(v1, . . . , vv )

⇒ F̄ = Φ−1 ◦ F ◦ (Φ× idv ) quadratic map: Fn+v → Fn

linear maps S : Fn → Fn−a and T : Fn+v → Fn+v of maximal rank
public key: P = S ◦ F̄ ◦ T : Fn+v → Fn−a

private key: S, F , T
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Signature Generation

Given: message (hash value) w ∈ Fn−a

1 Compute x = S−1(w) ∈ Fn and X = Φ(x) ∈ E
2 Choose random values for the vinegar variables v1, . . . , vv

Solve Fv1,...,vv (Y ) = X over E via Berlekamps algorithm
3 Compute y = Φ−1(Y ) ∈ Fn and z = T −1(y||v1|| . . . ||vv )

Signature: z ∈ Fn+v .
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Signature Verification

Given: signature z ∈ Fn+v , message (hash value) w ∈ Fn−a

Compute w′ = P(z) ∈ Fn−a

Accept the signature z ⇔ w′ = w.
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Workflow of HFEv-

Signature Generation

w ∈ Fn−a - x ∈ Fn - y ∈ Fn+v - z ∈ Fn+v

6

P

S−1 F̄−1 T −1

Signature Verification

X ∈ E Y ∈ E-F−1

v1, . . . , vv

� �6

Φ
?

Φ−1
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Toy Example - Key Generation
(q, n,D, a, v) = (4, 3, 17, 0, 1). w is a generator of the field
F = GF(4).
Extension field E = GF(43), E = F[b]/〈b3 + w〉
isomorphism φ : F3 → E, (a1, a2, a3) = a1 + a2 · b + a3 · b2.
affine map S : F3 → F3,

S(x1, . . . , x3) =

 w w 1
w 1 0
w 0 w2

 ·
 x1

x2
x3

+

 w
0
1


affine map T : F4 → F4,

T (x1, . . . , x4) =


0 w w 1

w2 0 w w2

w2 1 w2 w2

w2 0 1 w2

 ·
 x1

...
x4

+


w2

w
w
w2
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Key Generation (2)

The central map F : E× F→ E is given by

F = α17X 17 + α8X 8 + α5X 5 + α2X 2

+ β16(x4) · X 16 + β4(x4) · X 4 + β2(x4) · X 2 + β1(x4) · X + γ(x4)

with α17 = b2 + b + w , α8 = w2, α5 = w2b2 + w2, α2 = wb2 + wb + 1,
β16 = (w2x4 + 1) · b2 + (wx4 + 1) · b + wx4 + w2,
β4 = x4b2 + (x4 + w) · b + x4 + w ,
β1 = (w2x4 + w2) · b2 + (w2x4 + w) · b + x4 + 1 and

γ = (x2
4 + w) · b2 + (wx2

4 + x4) · b + x2
4 + wx4 + w .
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Public Key Computation (1)
First, we lift the (first three components of the) map T to the extension
field E (using the isomorphism Φ). We get

X̂ = (w2x1 + x2 + w2x3 + w2x4 + w) · b2 + (w2x1 + wx3 + w2x4 + w) · b
+ wx2 + wx3 + x4 + w2

Next we evaluate the central map F at X̂ . We get

Ŷ = F(X̂ ) = (wx1x2 + wx1x4 + w2x2x3 + wx2x4 + wx3x4

+ w2x3 + wx2
4 + wx4 + 1) · b2

+ (w2x2
1 + wx1x2 + wx1x3 + x1x4 + x1 + x2

2 + x2x4

+ x2 + w2x2
3 + wx3x4 + x3 + x2

4 + w2x4 + w2) · b
+ x1x2 + x1x3 + wx1x4 + x1 + x2

2 + wx2x3 + x2
3

+ x3 + x2
4 + wx4 + w
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Public Key Computation (2)

Finally, we move Ŷ back to the vector space F3 and apply the second
affine map S. We obtain

p(1)(x1, . . . , x4) = x2
1 + w2x1x2 + x1x3 + w2x1x4 + wx2 + w2x2

3

+ x3x4 + w2x3 + wx2
4 + 1,

p(2)(x1, . . . , x4) = w2x2
1 + wx1x4 + w2x1 + w2x2

2 + w2x2x3 + x2x4

+ x2 + x2
3 + wx3x4 + w2x3 + w2x2

4 ,

p(3)(x1, . . . , x4) = w2x1x2 + wx1x3 + wx1x4 + wx1 + wx2
2 + x2x3

+ x2x4 + wx2
3 + x3x4 + w2x2

4 + wx4 + 1.
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Signature Generation

We want to generate a signature z ∈ F4 for the message
w = (0,w ,w2) ∈ F3.
First, we invert the affine map S and obtain

x = S−1(w) = (1, 1,w)

and lift X to the extension field E, obtaining

X = φ(x) = 1 + b + wb2.

We choose x4 = 1 and substitute it into the central map F . We get

F1(X ) = (b2 + b + w) · X 17 + w2 · X 8 + (w2b2 + w2) · X 5

+ (wb2 + wb + 1) · X 2 + (wb2 + w2b + 1) · X 16

+ (b2 + w2b + w2) · X 4 + b · X + w2b2 + w2b + 1.
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Signature Generation (2)

To invert the equation F1(Y) = X, we compute

gcd(F1(X )− X,X 43 − X ) = X + b2 + w2b + w .

Therefore, a solution to the equation is given by Y = (b2 + w2b + w).
Moving Y down to the vector space and applying T −1 yields the signature

z = (w2,w2, 1,w).
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Signature Verification

To check, if z is indeed a valid signature for the message w, we compute

w′ = P(w2,w2, 1,w) = (0,w ,w2).

Since w′ = w holds, the signature z is accepted.
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Security

Main Attacks
MinRank Attack
Rank(F ) = r + a + v

⇒ ComplMinRank =
(

n + r + a + v
r + a + v

)ω

Direct attack [DY13]

dreg ≤
{ (q−1)·(r+a+v−1)

2 + 2 q even and r + a odd,
(q−1)·(r+a+v)

2 + 2 otherwise.
,

with r = blogq(D − 1)c+ 1 and 2 < ω ≤ 3.

A. Petzoldt Multivariate Cryptography PQCrypto Summer School 32 / 53



Efficiency

Most costly step in the signature generation process: Inversion of the
univariate polynomial equation

F(v1,...,vv )(Y ) = X (1)

by Berlekamp’s algorithm

ComplexityBerlekamp = O(D3 + n · D2)

⇒ Choose D as small as possible
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Conflict

Efficiency: Choose small D
Security: r = blogq(D − 1)c+ 1 should not be too small

⇒ Choose small q, e.g. q = 2
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Can we define a HFEv- like scheme over GF(2) [PD15]?

Remark: We only consider classical attacks (primarily)

First Problem: Collision Resistance of the hash function

security level k bit ⇒ hash length 2k ⇒ public key size > (2k)3/2 = 4k2

bit

security level # equations publc key size
80 160 >250 kB

100 200 >500 kB
128 256 >1 MB
192 384 >3 MB
256 512 > 8 MB
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Solution: Specially designed signature generation process

Generate several HFEv- signatures for different hash values of the
same message
Combine these HFEv- signatures to a single (shorter) signature

nonce

��

SHA-256

a

��
V

//Digest:
n− a bits

// •

//

// T −1 // F−1 // S−1 // Output:
n+ v bits

Fig. 2. Core operations of HFEv-

the results to a single signature. In particular, we apply the core HFEv- operation
4, 3, 3 and 4 times respectively for Gui-94, Gui-95, Gui-96 and -127.

A diagram of generating a signature is showed in figure 3. In Gui-95, for
example, the signing message is hashed to (D1||D2||D3) which 90-bit for each
Di and initialize S0 = 0. After inverting HFEv- core, one splits the 100-bit result
to S1||X1 which 90-bit for S1 and 10-bit for X1. S1 is fed back for next run
and X1 is output for comprising a full signature. The full signature is comprised
S3||X3||X2||X1 which is 120-bit in total. The hash function SHA-1 in the original
Quartz is replaced by SHA-256 in Gui due to some flaws of SHA-1.

Message // SHA-256
�� Di // ⊕ // HFEv- // split:

{Si||Xi}
//

Si

OO

Signature:
{S4||X4|| . . . ||X1}

or {S3||X3||X2||X1}

Fig. 3. Process of generating a signature

While verifying a signature, a public key P is comprised of quadratic equa-
tions for HFEv- core map (the reverse order of figure 2). Taking a scheme of
repeating HFEv- core 3 times as an example, for verifying the correctness of a
pair of (message,signature), the message is provide to a hash function for gener-

We call our new scheme Gui.
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The Gui Signature Scheme
Why this name?

Gui
Chinese pottery from
Longshan period
more than 4000 years old
3 legs: one in front,
2 in the back

front leg : HFE
back legs: Minus + Vinegar
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Signature Generationi

Input: Gui private key (S, F , T ) message d, repetition factor k
Output: signature σ ∈ GF(2)(n−a)+k(a+v)

1: h← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to k do
4: Di ← first n − a bits of h
5: (Si ,Xi )← HFEv−−1(Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sk ||Xk || . . . ||X1)
9: return σ
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Signature Verification
Input: Gui public key P, message d, repetition factor k, signature

σ ∈ GF(2)(n−a)+k(a+v)

Output: TRUE or FALSE
1: h← SHA-256(d)
2: (Sk ,Xk , . . . ,X1)← σ
3: for i = 1 to k do
4: Di ← first n − a bits of h
5: h← SHA-256(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕ Di+1
9: end for

10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if
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How to find suitable parameters for HFEv- over GF(2)?

Collision attacks are no longer a problem

⇒ Parameters are determined by the complexity of MinRank and direct
attacks

For the complexity os the MinRank attack we have a concrete formula
For the direct attack, we only have an upper bound on dreg.

dreg ≤
{ (q−1)·(r+a+v−1)

2 + 2 q even and r + a odd,
(q−1)·(r+a+v)

2 + 2 otherwise.
(?)

⇒ Perform experiments to estimate dreg in practice.
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Experiments

We want to answer the following questions
1 Can we observe the tradeoff between d , a and v indicated by (?) by

experiments?
2 Is the concrete ratio between a and v important for the security of

the scheme?
3 Is the upper bound on dreg given by (?) reasonably tight?
4 Can we reach high values of dreg even for small values of D?
5 Is this still true for the hybrid approach?

A. Petzoldt Multivariate Cryptography PQCrypto Summer School 41 / 53



Research Question 1
Can we observe the tradeoff between d and (a + v) indicated by (?) by
experiments?

Fix number of equations and the degree D, increases = a + v
Create HFEv-(n,D, a, v) systems
add field equations x2

i − xi

solve the systems with the F4 algorithm

20 equations
D r minimal s dreg time (s) memory (MB)

129 8 0 5 2.74 109.7
65 7 s = 1 5 2.69 110.7
33 6 s = 2 5 2.75 109.7
17 5 s = 3 5 2.72 109.7
9 4 s = 4 5 2.73 110.7
5 3 s = 5 5 2.73 109.6

random system 5 2.85 110.8
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Research Question 2

Is the concrete ratio between a and v important for the security of the
scheme?

Fix number of
equations, D and s,
vary a ∈ {0, . . . , s}
and set v = s − a
Create
HFEv-(n,D, a, v)
systems
add field equations
solve the systems with
F4

D=5, a+v=8
a v dreg time (s) memory (MB)
0 8 6 246.6 7,582
1 7 6 246.2 7,579
2 6 6 246.6 7,580
3 5 6 248.1 7,581
4 4 6 247.1 7,581
5 3 6 248.3 7,582
6 2 6 248.3 7,554
7 1 5 99.3 1,317
8 0 5 88.3 1,509
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Research Question 3
Is the upper bound on dreg given by (?) reasonably tight?

Fix D, a and v
Increase n until we reach the upper bound on dreg or run out of
memory

Tight instances
D a v upper bound for dreg (?) dreg (experimental)

5 0 0 3 3 for n ≥ 10
1 1 4 4 for n ≥ 23

9 0 1 4 4 for n ≥ 23
1 1 4 4 for n ≥ 21

17 0 0 4 4 for n ≥ 15
0 1 4 4 for n ≥ 12

⇒ For small values of D, a and v we could reach the bound.
⇒ For most of the other parameter sets we missed the upper bound

only by 1.
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Research Question 4

Can we reach high values of dreg even for small values of D?
D a v dreg (experimental) upper bound for dreg (?)
5 6 6 7 for n ≥ 38 9
9 5 5 7 for n ≥ 37 8

17 4 4 7 for n ≥ 37 8
⇒ Even for small values of D we can, by increasing a and v ,

reach dreg ≥ 7 .
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Research Question 5

Is this still true when guessing some variables before applying F4 (hybrid
approach)?
⇒ Even when guessing up to 10 variables we can reach dreg = 7

By substituting dreg = 7 into the formula

Complexitydirect = 3 ·
(

n + dreg
dreg

)2

·
(

n
2

)

gives a lower bound for the complexity of the direct attack against our
scheme.
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Parameter Choice of HFEv- over GF(2)

Efficiency ⇒ Choose D as small as possible
D = 5 ⇒ r = bLog2(D − 1)c+ 1 = 3
D = 9 ⇒ r = bLog2(D − 1)c+ 1 = 4
D = 17 ⇒ r = bLog2(D − 1)c+ 1 = 5

Increase a and v to reach the required security level
Choose a and v as equal as possible, i.e. 0 ≤ v − a ≤ 1.
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Parameters

We propose four versions of Gui
Gui-96 with (n,D, a, v) = (96, 5, 6, 6) providing a security level of 80
bit
Gui-95 with (n,D, a, v) = (95, 9, 5, 5) providing a security level of 80
bit
Gui-94 with (n,D, a, v) = (94, 17, 4, 4) providing a security level of 80
bit
and
Gui-127 with (n,D, a, v) = (127, 9, 4, 6) providing a security level of
120 bit
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Parameters and Key Sizes (pre-quantum)

security input signature public key private key
scheme level (bit) size (bit) size (bit) size (Bytes) size (Bytes)
Gui-96 80 90 126 63,036 3,175
Gui-95 80 90 120 60,600 3,053
Gui-94 80 90 122 58,212 2,943
Gui-127 120 123 163 142,576 5,350

RSA-1024 80 1024 1024 128 128
RSA-2048 112 2048 2048 256 256

ECDSA P160 80 160 320 40 60
ECDSA P192 96 192 384 48 72
ECDSA P256 128 256 512 64 96
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Quantum Attacks

A determined multivariate system of m equations over GF(2) can be
solved using

2m/2 · 2 ·m3

operations using a quantum computer.
⇒ we need a large number of equations (and variables) in the public key
⇒ very large public key size
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Quantum Parameters

quantum security public key private key signature
level (bit) size (kB) size (kB) size (bit)

80 Gui (GF(2),120,9,3,3,2) 110.7 3.8 129
100 Gui (GF(2),161,9,6,7,2) 271.8 7.5 181
128 Gui (GF(2),219,9,11,11,2) 680.4 14.5 252
192 Gui (GF(2),350,9,18,19,2) 2,781.6 40.9 406
256 Gui (GF(2),483,9,26,26,2) 7,269.2 82.8 561
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HFEv- - Summary

very short signatures
security well understood
conflict between security and efficiency
restricted to very small fields

HFEv- over GF(2)
very large public keys (especially when considering quantum attacks)

⇒ Can we do better when increasing the field size slightly (e.g. GF(4),
GF(5); ongoing work)

⇒ Alternative: MHFE (→ this conference)
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Other Multivariate Schemes

symmetric schemes
I hash functions, stream cipher (provable secure; not very efficient)

zero knowledge identification
⇒ provable secure signatures (MQDSS), (threshold) ring signature
public key encryption (Simple Matrix)
signature schemes with special properties

I (sequential) aggregate signatures
I blind signatures
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Conclusion

Multivariate Cryptography
major candidate for post-quantum cryptography
fast, moderate computational requirements
large keys
many practical signature schemes
not so good for encryption schemes

Open Problems
security of multivariate schemes
key size reduction
develop other schemes (key exchange ...)
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