Multivariate Cryptography Part 3: HFE (Hidden Field Equations)

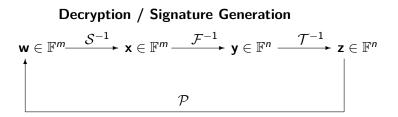
Albrecht Petzoldt

PQCrypto Summer School 2017 Eindhoven, Netherlands Friday, 23.06.2017

Reminder: Construction of MPKCs

- Easily invertible quadratic map $\mathcal{F}: \mathbb{F}^n \to \mathbb{F}^m$ (central map)
- Two invertible linear maps $\mathcal{S}:\mathbb{F}^m o\mathbb{F}^m$ and $\mathcal{T}:\mathbb{F}^n o\mathbb{F}^n$
- Public key: $\mathcal{P} = S \circ \mathcal{F} \circ \mathcal{T}$ supposed to look like a random system
- Private key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$ allows to invert the public key

Workflow



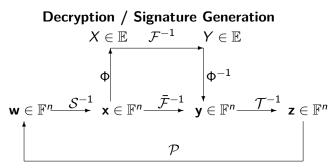
Encryption / Signature Verification

A. Petzoldt

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

Big Field Schemes

Central map *F* is defined over a degree *n* extension field E of F *F̄* = Φ⁻¹ ∘ *F* ∘ Φ : Fⁿ → Fⁿ quadratic



Encryption / Signature Verification

Extension Fields

- \mathbb{F}_q : finite field with q elements
- g(X) irreducible polynomial in $\mathbb{F}[X]$ of degree n $\Rightarrow \mathbb{F}_{q^n} \cong \mathbb{F}[X]/\langle g(X) \rangle$ finite field with q^n elements
- isomorphism $\phi: \mathbb{F}_q^n \to \mathbb{F}_{q^n}$, $(a_1, \dots, a_n) \mapsto \sum_{i=1}^n a_i \cdot X^{i-1}$
- Addition in \mathbb{F}_{q^n} : Addition in $\mathbb{F}_q[X]$
- Multiplication in \mathbb{F}_{q^n} : Multiplication in $\mathbb{F}_q[X]$ modulo g(X)

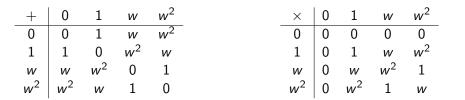
医静脉 医黄疸 医黄疸 医黄疸

Example: The field $GF(2^2)$

 \bullet Start with the field $\mathbb{F}_2=\{0,1\}$ of two elements

• Choose an irreducible polynomial g(X) of degree 2 in $\mathbb{F}_2[X]$, i.e. $g(X) = X^2 + X + 1$

$$\Rightarrow \mathbb{F}_{2^2} \cong \mathbb{F}_2[X]/\langle X^2 + X + 1 \rangle = \{0, 1, X, X + 1\}$$
$$\cong \{0, 1, w, w^2\} \text{ for a root } w \text{ of } g(X)$$



э

The HFE Cryptosystem [Pa96]

- "Hidden Field Equations"
- proposed by Patarin in 1995
- BigField Scheme
- can be used both for encryption and signatures
- finite field \mathbb{F} , extension field \mathbb{E} of degree *n*, isomorphism $\Phi : \mathbb{F}^n \to \mathbb{E}$

HFE - Key Generation

• central map $\mathcal{F}:\mathbb{E}\to\mathbb{E}$,

$$\mathcal{F}(X) = \sum_{0 \le i \le j}^{q^i + q^j \le D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \le D} \beta_i \cdot X^{q^i} + \gamma$$

$$\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi : \mathbb{F}^n o \mathbb{F}^n$$
 quadratic

- degree bound D needed for efficient decryption / signature generation
- linear maps $\mathcal{S}, \mathcal{T}: \mathbb{F}^n \to \mathbb{F}^n$
- public key: $\mathcal{P} = \mathcal{S} \circ \bar{\mathcal{F}} \circ \mathcal{T} : \mathbb{F}^n \to \mathbb{F}^n$
- private key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$

Encryption

Given: message (plaintext) $\mathbf{z} \in \mathbb{F}^n$

Compute ciphertext $\mathbf{w} \in \mathbb{F}^n$ by $\mathbf{w} = \mathcal{P}(\mathbf{z})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

Decryption

Given: ciphertext $\mathbf{w} \in \mathbb{F}^n$

- **(**) Compute $\mathbf{x} = S^{-1}(\mathbf{w}) \in \mathbb{F}^n$ and $X = \Phi(\mathbf{x}) \in \mathbb{E}$
- Solve $\mathcal{F}(Y) = X$ over \mathbb{E} via Berlekamp's algorithm
- Sompute $\mathbf{y} = \Phi^{-1}(Y) \in \mathbb{F}^n$ and $\mathbf{z} = \mathcal{T}^{-1}(\mathbf{y})$

Plaintext: $\mathbf{z} \in \mathbb{F}^n$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

HFE central map is not bijective

 \Rightarrow Decryption process does not neccessarily produce unique solution

 \Rightarrow Use redundancy in the plaintext

Signature Generation

Given: message d

- **(**) Use hash function $\mathcal{H}: \{0,1\}^{\star} \to \mathbb{F}^n$ to compute $\mathbf{w} = \mathcal{H}(d)$
- 2 Compute $\mathbf{x} = S^{-1}(\mathbf{w}) \in \mathbb{F}^n$ and $X = \Phi(\mathbf{x}) \in \mathbb{E}$
- Solve $\mathcal{F}(Y) = X$ over \mathbb{E} via Berlekamp's algorithm
- **③** Compute $\mathbf{y} = \Phi^{-1}(Y) \in \mathbb{F}^n$ and $\mathbf{z} = \mathcal{T}^{-1}(\mathbf{y})$

Signature: $\mathbf{z} \in \mathbb{F}^n$.

Signature Verification

Given: signature $\mathbf{z} \in \mathbb{F}^n$, message d

- Compute $\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}^n$
- Compute $\mathbf{w}' = \mathcal{P}(\mathbf{z}) \in \mathbb{F}^n$
- Accept the signature $\mathbf{z} \Leftrightarrow \mathbf{w}' = \mathbf{w}$.

э

Remark

HFE central map is not bijective

 \Rightarrow Signature generation process does not output a signature for every input message

 \Rightarrow Append a counter to the message d

The Attack of Kipnis and Shamir [KS99]

Idea: Look at the scheme over the extemsion field $\ensuremath{\mathbb{E}}$

- the linear maps S and T relate to univariate maps $S^*(X) = \sum_{i=1}^{n-1} s_i \cdot X^{q^i}$ and $T^*(X) = \sum_{i=1}^{n-1} t_i \cdot X^{q^i}$ with (unknown) coefficients s_i and $t_i \in \mathbb{E}$.
- the public key \mathcal{P}^{\star} can be expressed as

$$\mathcal{P}^{\star}(X) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} p_{ij}^{\star} X^{q^i+q^j} = \underline{X} \cdot P^{\star} \cdot \underline{X}^{T},$$

where $P^{\star} = [p_{ij}^{\star}]$ and $\underline{X} = (X^{q^0}, X^{q^1}, \dots, X^{q^{n-1}})$.

• The components of the matrix *P*^{*} can be found by polynomial interpolation.

1 E N 1 E N

The attack of Kipnis and Shamir (2)

• the relation
$$\mathcal{P}^{\star}(X) = \mathcal{S}^{\star} \circ \mathcal{F} \circ \mathcal{T}^{\star}(X)$$
 yields $(\mathcal{S}^{\star})^{-1} \circ \mathcal{P}^{\star}(X) = \mathcal{F} \circ \mathcal{T}^{\star}(X)$ and

$$\tilde{P} = \sum_{k=0}^{n-1} s_k \cdot G^{\star k} = W \cdot F \cdot W^{\mathsf{T}}$$

with
$$g_{ij}^{\star k} = (p^{\star}_{i-k \mod n, j-k \mod n})^{q^{k}}$$
, $w_{ij} = s_{j-i \mod n}^{q^{i}}$.
• We know that F has the form $F = \begin{pmatrix} \star & 0 \\ 0 & 0 \end{pmatrix}$.
 $\Rightarrow \operatorname{Rank}(F) \le r$ with $r = \lfloor \log_{q} D - 1 \rfloor + 1$.
 $\Rightarrow \operatorname{Rank}(W \cdot F \cdot W^{T}) \le r$
 \Rightarrow We can recover the coefficients s_{k} by solving a MinRank problem over the extension field \mathbb{E} .

3

Image: A matrix

MinRank attack on HFE

- Computing the map *P*[★] is very costly
 ⇒ The attack of Kipnis and Shamir is not very efficient.
- Work of Bettale et al: Perform the MinRank attack without recovering P^{*} ⇒ HFE can be broken by using a MinRank problem over the base field F.

$$\text{Complexity}_{\text{MinRank}} = \binom{n+r}{r}^{\omega}$$

with $2 < \omega \leq 3$ and $r = \lfloor \log_q(D-1) \rfloor + 1$.

Direct Attacks

- Experiments: Public Systems of HFE can be solved much faster than random systems
- Theoretical Explanation: Upper bound for $d_{
 m reg}$

$$\mathbf{d}_{\mathrm{reg}} \leq \begin{cases} \frac{(q-1)\cdot(r-1)}{2} + 2 & q \text{ even and } r \text{ odd,} \\ \frac{(q-1)\cdot r}{2} + 2 & \text{otherwise.} \end{cases},$$

with $r = \lfloor \log_q(D-1) \rfloor + 1$.

 \Rightarrow Basic version of HFE is not secure

HFE Variants

Encryption Schemes

- IPHFE+ (not very efficient)
- ZHFE (\rightarrow this conference)
- HFE- (for small minus parameter; \rightarrow this conference)

Signature Schemes

- HFEv-. Gui
- MHFEv (\rightarrow this conference)

э

HFE Variants

Encryption Schemes

- IPHFE+ (not very efficient)
- ZHFE (\rightarrow this conference)
- HFE- (for small minus parameter; \rightarrow this conference)

Signature Schemes

- HFEv-, Gui
- MHFEv (\rightarrow this conference)

э

HFEv- - Key Generation

finite field 𝔽, extension field 𝔼 of degree n, isomorphism Φ : 𝔽ⁿ → 𝖳
central map 𝓕 : 𝔽^v × 𝔼 → 𝔼,

$$\mathcal{F}(X) = \sum_{0 \leq i \leq j}^{q^i + q^j \leq D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \leq D} \beta_i(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}}) \cdot X^{q^i} + \gamma(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}})$$

 $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ (\Phi \times \mathrm{id}_{\nu}) \text{ quadratic map: } \mathbb{F}^{n+\nu} \to \mathbb{F}^{n}$

- linear maps $\mathcal{S}: \mathbb{F}^n \to \mathbb{F}^{n-a}$ and $\mathcal{T}: \mathbb{F}^{n+\nu} \to \mathbb{F}^{n+\nu}$ of maximal rank
- public key: $\mathcal{P} = \mathcal{S} \circ \bar{\mathcal{F}} \circ \mathcal{T} : \mathbb{F}^{n+v} \to \mathbb{F}^{n-a}$
- private key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$

Signature Generation

Given: message (hash value) $\mathbf{w} \in \mathbb{F}^{n-a}$

• Compute $\mathbf{x} = \mathcal{S}^{-1}(\mathbf{w}) \in \mathbb{F}^n$ and $X = \Phi(\mathbf{x}) \in \mathbb{E}$

② Choose random values for the vinegar variables v₁,..., v_v Solve F_{v1,...,vv}(Y) = X over E via Berlekamps algorithm

Signature:
$$\mathbf{z} \in \mathbb{F}^{n+\nu}$$
.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

Signature Verification

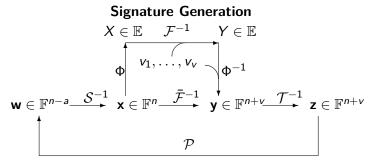
Given: signature $\mathbf{z} \in \mathbb{F}^{n+\nu}$, message (hash value) $\mathbf{w} \in \mathbb{F}^{n-a}$

• Compute
$$\mathbf{w}' = \mathcal{P}(\mathbf{z}) \in \mathbb{F}^{n-a}$$

• Accept the signature
$$\mathbf{z} \Leftrightarrow \mathbf{w}' = \mathbf{w}$$
.

3

Workflow of HFEv-



Signature Verification

Toy Example - Key Generation

- (q, n, D, a, v) = (4, 3, 17, 0, 1). *w* is a generator of the field $\mathbb{F} = GF(4)$.
- Extension field $\mathbb{E} = \operatorname{GF}(4^3)$, $\mathbb{E} = \mathbb{F}[b]/\langle b^3 + w \rangle$
- isomorphism $\phi : \mathbb{F}^3 \to \mathbb{E}, (a_1, a_2, a_3) = a_1 + a_2 \cdot b + a_3 \cdot b^2$.
- affine map $\mathcal{S}:\mathbb{F}^3
 ightarrow\mathbb{F}^3$,

$$\mathcal{S}(x_1,\ldots,x_3) = \begin{pmatrix} w & w & 1 \\ w & 1 & 0 \\ w & 0 & w^2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} w \\ 0 \\ 1 \end{pmatrix}$$

• affine map $\mathcal{T}:\mathbb{F}^4
ightarrow\mathbb{F}^4$,

$$\mathcal{T}(x_1,\ldots,x_4) = \begin{pmatrix} 0 & w & w & 1 \\ w^2 & 0 & w & w^2 \\ w^2 & 1 & w^2 & w^2 \\ w^2 & 0 & 1 & w^2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_4 \end{pmatrix} + \begin{pmatrix} w^2 \\ w \\ w \\ w^2 \end{pmatrix}$$

25 / 53

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Key Generation (2)

The central map $\mathcal{F}:\mathbb{E}\times\mathbb{F}\to\mathbb{E}$ is given by

$$\mathcal{F} = \alpha_{17} X^{17} + \alpha_8 X^8 + \alpha_5 X^5 + \alpha_2 X^2 + \beta_{16}(x_4) \cdot X^{16} + \beta_4(x_4) \cdot X^4 + \beta_2(x_4) \cdot X^2 + \beta_1(x_4) \cdot X + \gamma(x_4)$$

with
$$\alpha_{17} = b^2 + b + w$$
, $\alpha_8 = w^2$, $\alpha_5 = w^2b^2 + w^2$, $\alpha_2 = wb^2 + wb + 1$,
 $\beta_{16} = (w^2x_4 + 1) \cdot b^2 + (wx_4 + 1) \cdot b + wx_4 + w^2$,
 $\beta_4 = x_4b^2 + (x_4 + w) \cdot b + x_4 + w$,
 $\beta_1 = (w^2x_4 + w^2) \cdot b^2 + (w^2x_4 + w) \cdot b + x_4 + 1$ and

$$\gamma = (x_4^2 + w) \cdot b^2 + (wx_4^2 + x_4) \cdot b + x_4^2 + wx_4 + w.$$

A. Petzoldt

э

イロト イポト イヨト イヨト

Public Key Computation (1)

First, we lift the (first three components of the) map \mathcal{T} to the extension field \mathbb{E} (using the isomorphism Φ). We get

$$\hat{X} = (w^2 x_1 + x_2 + w^2 x_3 + w^2 x_4 + w) \cdot b^2 + (w^2 x_1 + w x_3 + w^2 x_4 + w) \cdot b + w x_2 + w x_3 + x_4 + w^2$$

Next we evaluate the central map \mathcal{F} at \hat{X} . We get

$$\begin{split} \hat{Y} &= \mathcal{F}(\hat{X}) &= (wx_1x_2 + wx_1x_4 + w^2x_2x_3 + wx_2x_4 + wx_3x_4 \\ &+ w^2x_3 + wx_4^2 + wx_4 + 1) \cdot b^2 \\ &+ (w^2x_1^2 + wx_1x_2 + wx_1x_3 + x_1x_4 + x_1 + x_2^2 + x_2x_4 \\ &+ x_2 + w^2x_3^2 + wx_3x_4 + x_3 + x_4^2 + w^2x_4 + w^2) \cdot b \\ &+ x_1x_2 + x_1x_3 + wx_1x_4 + x_1 + x_2^2 + wx_2x_3 + x_3^2 \\ &+ x_3 + x_4^2 + wx_4 + w \end{split}$$

A. Petzoldt

Public Key Computation (2)

Finally, we move \hat{Y} back to the vector space \mathbb{F}^3 and apply the second affine map $\mathcal{S}.$ We obtain

$$p^{(1)}(x_1, \dots, x_4) = x_1^2 + w^2 x_1 x_2 + x_1 x_3 + w^2 x_1 x_4 + w x_2 + w^2 x_3^2 + x_3 x_4 + w^2 x_3 + w x_4^2 + 1,$$

$$p^{(2)}(x_1, \dots, x_4) = w^2 x_1^2 + w x_1 x_4 + w^2 x_1 + w^2 x_2^2 + w^2 x_2 x_3 + x_2 x_4 + x_2 + x_3^2 + w x_3 x_4 + w^2 x_3 + w^2 x_4^2,$$

$$p^{(3)}(x_1, \dots, x_4) = w^2 x_1 x_2 + w x_1 x_3 + w x_1 x_4 + w x_1 + w x_2^2 + x_2 x_3 + x_2 x_4 + w x_3^2 + x_3 x_4 + w^2 x_4^2 + w x_4 + 1.$$

28 / 53

Signature Generation

We want to generate a signature $\mathbf{z} \in \mathbb{F}^4$ for the message $\mathbf{w} = (0, w, w^2) \in \mathbb{F}^3$. First, we invert the affine map S and obtain

$$\mathbf{x} = \mathcal{S}^{-1}(\mathbf{w}) = (1, 1, w)$$

and lift X to the extension field \mathbb{E} , obtaining

$$X = \phi(\mathbf{x}) = 1 + b + wb^2.$$

We choose $x_4 = 1$ and substitute it into the central map \mathcal{F} . We get

$$\begin{aligned} \mathcal{F}_1(X) &= (b^2 + b + w) \cdot X^{17} + w^2 \cdot X^8 + (w^2b^2 + w^2) \cdot X^5 \\ &+ (wb^2 + wb + 1) \cdot X^2 + (wb^2 + w^2b + 1) \cdot X^{16} \\ &+ (b^2 + w^2b + w^2) \cdot X^4 + b \cdot X + w^2b^2 + w^2b + 1. \end{aligned}$$

Signature Generation (2)

To invert the equation $\mathcal{F}_1(\mathbf{Y}) = \mathbf{X}$, we compute

$$gcd(\mathcal{F}_1(X) - \mathbf{X}, X^{4^3} - X) = X + b^2 + w^2b + w.$$

Therefore, a solution to the equation is given by $\mathbf{Y} = (b^2 + w^2b + w)$. Moving \mathbf{Y} down to the vector space and applying \mathcal{T}^{-1} yields the signature

$$\mathbf{z} = (w^2, w^2, 1, w).$$

Signature Verification

To check, if z is indeed a valid signature for the message w, we compute

$$\mathbf{w}' = \mathcal{P}(w^2, w^2, 1, w) = (0, w, w^2).$$

Since $\mathbf{w}' = \mathbf{w}$ holds, the signature \mathbf{z} is accepted.

Security

Main Attacks

• MinRank Attack $\operatorname{Rank}(F) = r + a + v$

$$\Rightarrow \text{Compl}_{\text{MinRank}} = \binom{n+r+a+v}{r+a+v}^{\omega}$$

• Direct attack [DY13]

$$\label{eq:dreg} \mathrm{d}_{\mathrm{reg}} \leq \begin{cases} \frac{(q-1)\cdot(r+a+\nu-1)}{2}+2 & q \text{ even and } r+a \text{ odd}, \\ \frac{(q-1)\cdot(r+a+\nu)}{2}+2 & \text{otherwise.} \end{cases},$$
 with $r = \lfloor \log_q(D-1) \rfloor + 1$ and $2 < \omega \leq 3$.

- 20

イロト 不得 トイヨト イヨト

Efficiency

Most costly step in the signature generation process: Inversion of the univariate polynomial equation

$$\mathcal{F}_{(v_1,\dots,v_\nu)}(Y) = X \tag{1}$$

by Berlekamp's algorithm

$$\text{Complexity}_{\text{Berlekamp}} = \mathcal{O}(D^3 + n \cdot D^2)$$

 \Rightarrow Choose *D* as small as possible

Conflict

- Efficiency: Choose small D
- Security: $r = \lfloor \log_q(D-1) \rfloor + 1$ should not be too small
- \Rightarrow Choose small q, e.g. q = 2

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Can we define a HFEv- like scheme over GF(2) [PD15]?

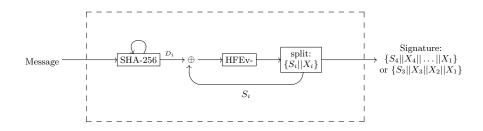
Remark: We only consider classical attacks (primarily)

First Problem: Collision Resistance of the hash function

security level k bit \Rightarrow hash length $2k \Rightarrow$ public key size $> (2k)^3/2 = 4k^2$			
	security level	# equations	publc key size
bit	80	160	>250 kB
	100	200	>500 kB
	128	256	>1 MB
	192	384	>3 MB
	256	512	> 8 MB

Solution: Specially designed signature generation process

- Generate several HFEv- signatures for different hash values of the same message
- Combine these HFEv- signatures to a single (shorter) signature



We call our new scheme Gui.

The Gui Signature Scheme

Why this name?

Gui

- Chinese pottery from Longshan period
- more than 4000 years old
- 3 legs: one in front, 2 in the back

- front leg : HFE
- back legs: Minus + Vinegar

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Signature Generationi

Input: Gui private key $(S, \mathcal{F}, \mathcal{T})$ message **d**, repetition factor k **Output:** signature $\sigma \in GF(2)^{(n-a)+k(a+v)}$

- 1: $\mathbf{h} \leftarrow \mathsf{SHA-256}(\mathbf{d})$
- 2: $S_0 \leftarrow \mathbf{0} \in \mathrm{GF}(2)^{n-a}$
- 3: for i = 1 to k do
- 4: $D_i \leftarrow \text{first } n a \text{ bits of } \mathbf{h}$
- 5: $(S_i, X_i) \leftarrow \mathrm{HFEv}^{-1}(D_i \oplus S_{i-1})$
- 6: $\mathbf{h} \leftarrow \mathsf{SHA-256}(\mathbf{h})$
- 7: end for
- 8: $\sigma \leftarrow (S_k ||X_k|| \dots ||X_1)$
- 9: return σ

Signature Verification

Input: Gui public key \mathcal{P} , message **d**, repetition factor k, signature $\sigma \in \operatorname{GF}(2)^{(n-a)+k(a+v)}$

Output: TRUE or FALSE

- 1: $\mathbf{h} \leftarrow \mathsf{SHA-256}(\mathbf{d})$
- 2: $(S_k, X_k, \ldots, X_1) \leftarrow \sigma$
- 3: for i = 1 to k do
- 4: $D_i \leftarrow \text{first } n a \text{ bits of } \mathbf{h}$
- 5: $\mathbf{h} \leftarrow \mathsf{SHA-256}(\mathbf{h})$
- 6: end for
- 7: for i = k 1 to 0 do
- 8: $S_i \leftarrow \mathcal{P}(S_{i+1}||X_{i+1}) \oplus D_{i+1}$
- 9: end for
- 10: if $S_0 = 0$ then
- 11: return TRUE
- 12: **else**
- 13: return FALSE
- 14: end if

How to find suitable parameters for HFEv- over GF(2)?

Collision attacks are no longer a problem

 \Rightarrow Parameters are determined by the complexity of MinRank and direct attacks

- For the complexity os the MinRank attack we have a concrete formula
- For the direct attack, we only have an upper bound on $d_{\rm reg}$.

$$d_{\rm reg} \leq \begin{cases} \frac{(q-1)\cdot(r+a+\nu-1)}{2} + 2 & q \text{ even and } r+a \text{ odd}, \\ \frac{(q-1)\cdot(r+a+\nu)}{2} + 2 & \text{ otherwise.} \end{cases}$$
(*)

 \Rightarrow Perform experiments to estimate d_{reg} in practice.

Experiments

We want to answer the following questions

- Can we observe the tradeoff between d, a and v indicated by (*) by experiments?
- Is the concrete ratio between a and v important for the security of the scheme?
- **③** Is the upper bound on $d_{\rm reg}$ given by (*) reasonably tight?
- So Can we reach high values of d_{reg} even for small values of D?
- S Is this still true for the hybrid approach?

Can we observe the tradeoff between d and (a + v) indicated by (\star) by experiments?

- Fix number of equations and the degree D, increase s = a + v
- Create HFEv-(n, D, a, v) systems
- add field equations $x_i^2 x_i$
- solve the systems with the F_4 algorithm

		20 equations				
D	r	minimal s	d _{reg}	time (s)	memory (MB)	
129	8	0	5	2.74	109.7	
65	7	s = 1	5	2.69	110.7	
33	6	<i>s</i> = 2	5	2.75	109.7	
17	5	<i>s</i> = 3	5	2.72	109.7	
9	4	<i>s</i> = 4	5	2.73	110.7	
5	3	<i>s</i> = 5	5	2.73	109.6	
random system			5	2.85	110.8	

3

Is the concrete ratio between a and v important for the security of the scheme?

- Fix number of equations, D and s, vary a ∈ {0,...,s} and set v = s - a
- Create HFEv-(*n*, *D*, *a*, *v*) systems
- add field equations
- solve the systems with *F*₄

	D=5, a+v=8						
а	v	d _{reg}	time (s)	memory (MB)			
0	8	6	246.6	7,582			
1	7	6	246.2	7,579			
2	6	6	246.6	7,580			
3	5	6	248.1	7,581			
4	4	6	247.1	7,581			
5	3	6	248.3	7,582			
6	2	6	248.3	7,554			
7	1	5	99.3	1,317			
8	0	5	88.3	1,509			

э

Is the upper bound on d_{reg} given by (*) reasonably tight?

- Fix D, a and v
- Increase n until we reach the upper bound on d_{reg} or run out of memory

D	а	v	upper bound for d_{reg} (*)	bund for $d_{reg}(\star) \mid d_{reg}$ (experimental)			
5	0	0	3	3	for $n \ge 10$		
	1	1	4	4	for $n \ge 23$		
9	0	1	4	4	for $n \ge 23$		
9	1	1	4	4	for $n \ge 21$		
17	0	0	4	4	for $n \ge 15$		
	0	1	4	4	for $n \ge 12$		

Tight instances

 \Rightarrow For small values of *D*, *a* and *v* we could reach the bound.

 \Rightarrow For most of the other parameter sets we missed the upper bound only by 1.

Can we reach high values of d_{reg} even for small values of D?

D	а	v	d _{reg} (experimental)		upper bound for $d_{reg}(\star)$
5	6	6	7	for $n \ge 38$	9
9	5	5	7	for $n \ge 37$	8
17	4	4	7	for $n \ge 37$	8

 \Rightarrow Even for small values of D we can, by increasing a and v, reach $d_{\rm reg} \geq 7$.

3

Is this still true when guessing some variables before applying F_4 (hybrid approach)?

 \Rightarrow Even when guessing up to 10 variables we can reach $d_{\rm reg}=7$

By substituting $d_{\rm reg} = 7$ into the formula

$$\text{Complexity}_{\text{direct}} = 3 \cdot \left(\frac{n + d_{\text{reg}}}{d_{\text{reg}}} \right)^2 \cdot \binom{n}{2}$$

gives a lower bound for the complexity of the direct attack against our scheme.

Parameter Choice of HFEv- over GF(2)

Efficiency \Rightarrow Choose *D* as small as possible

• $D = 5 \Rightarrow r = \lfloor \operatorname{Log}_2(D-1) \rfloor + 1 = 3$

•
$$D = 9 \Rightarrow r = \lfloor \operatorname{Log}_2(D-1) \rfloor + 1 = 4$$

•
$$D = 17 \Rightarrow r = \lfloor \operatorname{Log}_2(D-1) \rfloor + 1 = 5$$

Increase a and v to reach the required security level Choose a and v as equal as possible, i.e. $0 \le v - a \le 1$.

Parameters

We propose four versions of Gui

- Gui-96 with (*n*, *D*, *a*, *v*) = (96, 5, 6, 6) providing a security level of 80 bit
- Gui-95 with (*n*, *D*, *a*, *v*) = (95, 9, 5, 5) providing a security level of 80 bit
- Gui-94 with (n, D, a, v) = (94, 17, 4, 4) providing a security level of 80 bit and
- Gui-127 with (*n*, *D*, *a*, *v*) = (127, 9, 4, 6) providing a security level of 120 bit

Parameters and Key Sizes (pre-quantum)

	security	input	signature	public key	private key
scheme	level (bit)	size (bit)	size (bit)	size (Bytes)	size (Bytes)
Gui-96	80	90	126	63,036	3,175
Gui-95	80	90	120	60,600	3,053
Gui-94	80	90	122	58,212	2,943
Gui-127	120	123	163	142,576	5,350
RSA-1024	80	1024	1024	128	128
RSA-2048	112	2048	2048	256	256
ECDSA P160	80	160	320	40	60
ECDSA P192	96	192	384	48	72
ECDSA P256	128	256	512	64	96

< □ > < 同 > < 回 > < 回 > < 回 >

э

A determined multivariate system of m equations over GF(2) can be solved using

 $2^{m/2} \cdot 2 \cdot m^3$

operations using a quantum computer.

 \Rightarrow we need a large number of equations (and variables) in the public key \Rightarrow very large public key size

Quantum Parameters

quantum security		public key	private key	signature
level (bit)		size (kB)	size (kB)	size (bit)
80	Gui (GF(2),120,9,3,3,2)	110.7	3.8	129
100	Gui (GF(2),161,9,6,7,2)	271.8	7.5	181
128	Gui (GF(2),219,9,11,11,2)	680.4	14.5	252
192	Gui (GF(2),350,9,18,19,2)	2,781.6	40.9	406
256	Gui (GF(2),483,9,26,26,2)	7,269.2	82.8	561

2

イロト イヨト イヨト イヨト

HFEv- - Summary

- very short signatures
- security well understood
- conflict between security and efficiency
- restricted to very small fields

HFEv- over GF(2)

• very large public keys (especially when considering quantum attacks) \Rightarrow Can we do better when increasing the field size slightly (e.g. GF(4), GF(5); ongoing work)

 \Rightarrow Alternative: MHFE (\rightarrow this conference)

Other Multivariate Schemes

- symmetric schemes
 - hash functions, stream cipher (provable secure; not very efficient)
- zero knowledge identification \Rightarrow provable secure signatures (MQDSS), (threshold) ring signature
- public key encryption (Simple Matrix)
- signature schemes with special properties
 - (sequential) aggregate signatures
 - blind signatures

Conclusion

Multivariate Cryptography

- major candidate for post-quantum cryptography
- fast, moderate computational requirements
- large keys
- many practical signature schemes
- not so good for encryption schemes

Open Problems

- security of multivariate schemes
- key size reduction
- develop other schemes (key exchange ...)

References

- Pa96 J. Patarin: Hidden Field equations (HFE) and Isomorphisms of Polynomials (IP). EUROCRYPT 96, LNCS vol.1070, pp. 38–48, Springer, 1996.
- KS99 A. Kipnis, A. Shamir: Cryptanalysis of the HFE Public Key Cryptosystem. CRYPTO 99, LNCS vol. 1666, pp. 19 - 30. Springer 1999.
- PD15 A. Petzoldt, M.S. Chen, B.Y. Yang, C. Tao, J. Ding: Design Principles for HFEv- based Signature Schemes. ASIACRYPT 2015 - Part 1, LNCS vol. 9452, pp. 311-334. Springer, 2015.
- DY13 J. Ding, B.Y. Yang: Degree of regularity for HFEv and HFEv-. PQCrypto 2013, LNCS vol. 7932, pp. 52 - 66. Springer, 2013.