Multivariate Cryptography - Exercise 2
 PQ Crypto Summer School 2017

1 HFEv

Let $\mathbb{F}=G F(2)$ and $(n, D, a, v)=(3,5,0,1)$. Let the extension field $\mathbb{E} \cong \mathbb{F}_{2^{3}}$ be given as $\mathbb{E}=\mathbb{F}[x] /\left\langle X^{3}+X+1\right\rangle$.
We use the isomorphism

$$
\phi: \mathbb{F}^{3} \rightarrow \mathbb{E}, \phi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2} b+x_{3} b^{2}
$$

to lift an element of the vector space \mathbb{F}^{3} to the extension field \mathbb{E}.

Let the two affine transformations $\mathcal{S}: \mathbb{F}^{3} \rightarrow \mathbb{F}^{3}$ and $\mathbb{F}^{4} \rightarrow \mathbb{F}^{4}$ be given by

$$
\begin{gathered}
\mathcal{S}\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\mathcal{T}\left(x_{1}, \ldots, x_{4}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{4}
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right) .
\end{gathered}
$$

Let the central map $\mathcal{F}: \mathbb{E} \times \mathbb{F} \rightarrow \mathbb{E}$ of our scheme be given by

$$
\mathcal{F}(X)=(b+1) \cdot X^{5}+\left(x_{4} \cdot b^{2}+b+x_{4}\right) \cdot X^{4}+b^{2} \cdot X^{3}+\left(x_{4}+1\right) \cdot X^{2}+\left(x_{4} \cdot b^{2}+\left(x_{4}+1\right) \cdot b+1\right) \cdot X+x_{4}^{2}+1 .
$$

1. Compute addition and multiplication tables for the field \mathbb{E}. What is the multiplicative inverse of b^{2} (extended euclidean algorithm)?
2. Compute a signature $\mathbf{z} \in \mathbb{F}^{4}$ for the message $\mathbf{w}=(1,0,1)^{T} \in \mathbb{F}^{3}$.

Use $x_{4}=1$ for the value of the Vinegar variable x_{4}.
Hint: A solution to the equation $\mathcal{F}_{V}(\mathbf{Y})=\mathbf{X}$ can be found by computing

$$
\operatorname{gcd}\left(\mathcal{F}_{V}-\mathbf{X}, X^{8}-X\right)=\operatorname{gcd}\left(\left(\mathcal{F}_{V}-\mathbf{X}, \prod_{a \in \mathbb{E}}(X-a)\right)\right.
$$

