Exercises for "Lattice-based cryptography: Episode V: the ring strikes back" (Daniel J. Bernstein; joint work with Tanja Lange)

Fix an integer $n \ge 0$. Define R as the ring \mathbb{Z}^n . The elements of R are vectors (v_1, v_2, \ldots, v_n) with $v_1, v_2, \ldots, v_n \in \mathbb{Z}$. Addition and multiplication in R are componentwise: e.g., $(3, 5) \cdot (7, 11) = (21, 55)$ for n = 2.

Exercise 1. Fix integers c_1, c_2, \ldots, c_n . Show that the following set is an ideal of R: $\{(v_1, v_2, \ldots, v_n) : v_1 \in c_1 \mathbb{Z}, v_2 \in c_2 \mathbb{Z}, \ldots, v_n \in c_n \mathbb{Z}\}.$

Exercise 2. Show that every ideal of R can be expressed in this way.

Exercise 3. Fix a real number $\gamma \geq 1$. The γ -approximate shortest-vector problem for R, abbreviated R-SVP $_{\gamma}$, is the following problem.

You are given elements $r_1, r_2, \ldots, r_n \in R$, not all zero. Define I as the ideal $r_1R + r_2R + \cdots + r_nR$. Your task is to find a nonzero vector in I whose length is at most γ times the length of the shortest nonzero vector in I.

Explain how to efficiently solve R-SVP $_{\gamma}$. Solve it for $n = 2, \gamma = 1, r_1 = (314, 159), r_2 = (271, 828).$

Exercise 4. Fix an integer q > 0. Fix a distribution χ on \mathbf{Z} : e.g., choosing $i \in \mathbf{Z}$ with chance proportional to $\exp(-i^2/n)$. The learning-with- χ -errors problem for R modulo q, abbreviated R/q-LWE_{χ}, is the following problem.

There are random elements $s, r_1, e_1, r_2, e_2, r_3, e_3, \ldots \in R$, with all entries chosen independently. Each entry of s, r_1, r_2, r_3, \ldots is chosen uniformly from $\{0, 1, \ldots, q-1\}$. Each entry of e_1, e_2, e_3, \ldots is chosen from χ .

You are given r_1 ; $sr_1 + e_1 \mod q$; r_2 ; $sr_2 + e_2 \mod q$; r_3 ; $sr_3 + e_3 \mod q$; etc. Here "mod q" means that each entry is reduced modulo q to the range $\{0, 1, \ldots, q-1\}$; and " $a+b \mod q$ " means $(a+b) \mod q$, not $a+(b \mod q)$. Your task is to find s.

Show that R/q-LWE_{χ} is "provably secure": specifically, prove that any attack A against R/q-LWE_{χ} implies an attack A' against R-SVP_{γ} where the time and success probability of A' are at most polynomially worse than the time and success probability of A. (Hint: Use the previous exercise.)

Exercise 5. Explain how to efficiently solve R/q-LWE_{χ}.

Exercise 6. Literature review: Figure out why this type of "security proof" is often claimed to be an indication of security, rather than an indication of insecurity. Identify weaknesses in the underlying arguments.