Solutions: Isogeny-based crypto

PQCrypto Summer School 2017

July 3, 2017

1. Define

$$
E / \mathbb{Q}: y^{2}=x^{3}+1
$$

(a) The line passing through $(-1,0)$ and $(0,1)$ is defined by $L: y=x+1$. To find the third point of intersection between L and E we plug L into E :

$$
(x+1)^{2}=x^{3}+1 \Leftrightarrow 0=x^{3}-x^{2}-2 x=x(x+1)(x-2)
$$

So the third point in $L \cap E$ has x coordinate 2 and y coordinate $2+1=3$. Therefore

$$
(-1,0)+(0,1)=-(2,3)=(2,-3)
$$

(b) To compute the tangent line at the point $(0,1)$ we need to compute the gradient of E at this point, so we first differentiate E with respect to y, giving

$$
2 y \frac{d y}{d x}=3 x^{2}
$$

Therefore, at $(0,1)$ the tangent to E has gradient $\frac{d y}{d x}=0$, so the equation of the line is given by

$$
L: x=0 .
$$

By plugging L into E we now see that the unique second intersection point of L with E is $(0,-1)$, hence

$$
2(0,1)=(0,-1)
$$

(c) Clearly $(0,1) \neq \infty$ and by (b), we have that $2(0,1)=(0,-1) \neq \infty$ so $n>2$. Now

$$
3(0,1)=2(0,1)+(0,1)=(0,1)+(0,-1)=\infty
$$

hence $n=3$.
2. Define

$$
E / \mathbb{F}_{17}: y^{2}=x^{3}+1
$$

and

$$
E^{\prime} / \mathbb{F}_{17}: y^{2}=x^{3}-10
$$

(This was a typo in the problem sheet).
(a) Define

$$
f:(x, y) \mapsto\left(\left(x^{3}+4\right) / x^{2},\left(x^{3} y-8 y\right) / x^{3}\right)
$$

We want to show that $f: E \rightarrow E^{\prime}$, or equivalently, that if

$$
\begin{gather*}
x^{\prime}=\left(x^{3}+4\right) / x^{2}, \tag{1}\\
y^{\prime}=\left(x^{3} y-8 y\right) / x^{3}, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
y^{2} \equiv x^{3}+1 \bmod 17, \tag{3}
\end{equation*}
$$

then

$$
\left(y^{\prime}\right)^{2} \equiv\left(x^{\prime}\right)^{3}-10 \bmod 17
$$

So assume (1), (22), and (3). Then

$$
\begin{array}{rlrl}
\left(y^{\prime}\right)^{2}+10 & =\left(y^{2}\left(x^{3}-8\right)^{2}+10 x^{6}\right) / x^{6} & & \text { by }(2) \\
& \equiv\left(\left(x^{3}+1\right)\left(x^{3}-8\right)^{2}+10 x^{6}\right) / x^{6} \bmod 17 & & \text { by } \\
& \equiv\left(x^{9}+12 x^{6}+48 x^{3}+64\right) / x^{6} \bmod 17 & \\
& \equiv\left(x^{\prime}\right)^{3} \bmod 17 & & \text { by }(1) .
\end{array}
$$

(b) We claim that the points in the preimage of $(3,0)$ are

$$
\{(0,-1),(2,3),(2,-3) .\}
$$

Any point (x, y) in the preimage of $(3,0)$ under f must satisfy

$$
x^{3} y-8 y \equiv 0 \bmod 17
$$

so either $y \equiv 0 \bmod 17$ or $x^{3} \equiv 8 \bmod 17$. There is a unique point in $E\left(\mathbb{F}_{17}\right)$ with $y \equiv 0$ given by $P_{1}=(-1,0)$, and there are exactly 2 points in $E\left(\mathbb{F}_{17}\right)$ with $x^{3} \equiv 8$ given by $P_{2}=(2,3)$ and $P_{3}=(2,-3)$. Hence the preimage of $(3,0)$ under f is given by

$$
\left\{P_{i} \in\left\{P_{1}, P_{2}, P_{3}\right\}: f\left(P_{i}\right)=(3,0)\right\}
$$

Now

$$
\begin{array}{ll}
f\left(P_{1}\right)=\left(\left((-1)^{3}+4\right) /(-1)^{2}, 0\right) & =(3,0) \\
f\left(P_{2}\right)=\left(\left(2^{3}+4\right) / 2^{2},\left(2^{3} \cdot 3-8 \cdot 3\right) / 2^{3}\right) & =(3,0) \\
f\left(P_{3}\right)=\left(\left(2^{3}+4\right) / 2^{2},\left(2^{3} \cdot(-3)-8 \cdot(-3)\right) / 2^{3}\right) & =(3,0)
\end{array}
$$

and hence our claim holds.
(c) In the slides we saw that for an elliptic curve defined by $E: y^{2}=$ $x^{3}+a x+b$, the j-invariant is given by

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

For both E and E^{\prime} we have $a=0$, and hence

$$
j(E)=j\left(E^{\prime}\right)=0 .
$$

(d) To see that E and E^{\prime} are isomorphic over $\mathbb{F}_{17^{2}}$, we first observe that $\binom{-10}{17}=-1$ and hence $\mathbb{F}_{17^{2}} \cong \mathbb{F}_{17}(\sqrt{-10})$. We then claim that the map

$$
f:(x, y) \rightarrow(-3 x, \sqrt{-10} y)
$$

defined over $\mathbb{F}_{17}(\sqrt{-10})$, is an isomorphism $E^{\prime} \rightarrow E$. To see this, we divide the equation for E^{\prime} by -10 :

$$
E^{\prime}: \frac{y^{2}}{-10}=\frac{x^{3}}{-10}+1
$$

and then apply f :

$$
f\left(E^{\prime}\right): \frac{-10 y^{2}}{-10}=\frac{(-3 x)^{3}}{-10}+1
$$

which is the equation for E. So f defines a map $E^{\prime} \rightarrow E$. Similarly,

$$
g:(x, y) \mapsto\left((-3)^{-1} x,\left(\sqrt{-10}^{-1} y\right)\right.
$$

defines a map $E \rightarrow E^{\prime}$, and $f \circ g=g \circ f=\mathrm{id}$, so E and E^{\prime} are isomorphic over $\mathbb{F}_{17^{2}}$.
It remains to show that E and E^{\prime} are not isomorphic over \mathbb{F}_{17}. Given the material from the lecture, the only viable way to check is by brute force: write every invertible rational map over \mathbb{F}_{17} and check that none of them work (using a computer)!
Here is a nicer way; the following is Theorem III.3.1(b) in 'Rational Points on Elliptic Curves' by Silverman and Tate:

Theorem. Let k be a field and E, E^{\prime} elliptic curves over k. Every isomorphism from E to E^{\prime} defined over \bar{k} restricts to an affine isomorphism of the form

$$
\phi(x, y)=\left(u^{2} x+r, u^{3} y+s u^{2} x+t\right)
$$

where $u, r, s, t \in \bar{k}$. The isomorphism is defined over k if and only if $u, r, s, t \in k$.

Observe further that as our elliptic curves are all of the form $y^{2}=$ $x^{3}+a x+b$, we must always have that $s=t=0$. We proceed by attempting to compute u and r in our case. Any \mathbb{F}_{17}-isomorphism from E to E^{\prime} must also define an isomorphism of groups

$$
E\left(\mathbb{F}_{17}\right) \rightarrow E^{\prime}\left(\mathbb{F}_{17}\right)
$$

so that in particular, a point of order n will be sent to a point of order n. We compute that the set of $E\left(\mathbb{F}_{17}\right)$-points of order 2 is given by

$$
E^{(2)}:=\{(16,0)\}
$$

the set of $E\left(\mathbb{F}_{17}\right)$-points of order 3 is given by

$$
E^{(3)}:=\{(0,1),(0,16)\}
$$

the set of $E^{\prime}\left(\mathbb{F}_{17}\right)$-points of order 2 is given by

$$
\left(E^{\prime}\right)^{(2)}:=\{(3,0)\}
$$

and the set of $E^{\prime}\left(\mathbb{F}_{17}\right)$-points of order 3 is given by

$$
\left(E^{\prime}\right)^{(3)}:=\{(5,8),(5,9)\}
$$

Suppose that we have an isomorphism $E \rightarrow E^{\prime}$ defined by

$$
\phi:(x, y) \mapsto\left(u^{2} x+r, u^{3} y\right) .
$$

Then as $\phi: E^{(3)} \rightarrow\left(E^{\prime}\right)^{(3)}$, we conclude that $r=5$ and $u= \pm 2$. But then

$$
\phi:(16,0) \mapsto(-4+5,0)
$$

so ϕ does not map $E^{(2)} \rightarrow\left(E^{\prime}\right)^{(2)}$, which is a contradiction.
3. As ℓ is a prime, every size ℓ subgroup of $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ is isomorphic to the cyclic group $\mathbb{Z} / \ell \mathbb{Z}$. Furthermore, every element of

$$
\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

except for $(0,0)$ generates a cyclic group of order ℓ, and each non-zero element of such a cyclic group $G \cong \mathbb{Z} / \ell \mathbb{Z}$ generates G. Hence, the number of distinct size ℓ subgroups of $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ is given by

$$
\frac{\#(\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z})-1}{\#(\mathbb{Z} / \ell \mathbb{Z})^{\times}}=\frac{\ell^{2}-1}{\ell-1}=\ell+1
$$

From the lectures we know that for an elliptic curve E / \mathbb{F}_{q} and a prime ℓ such that $\ell \neq p$, the ℓ-torsion of E is

$$
E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

We also know that for every size ℓ subgroup $G \subset E[\ell]$, there exists an elliptic curve E^{\prime} and a separable isogeny $\varphi: E \rightarrow E^{\prime}$ with $\operatorname{ker}(\varphi)=G$, giving us $\ell+1$ degree ℓ isogenies from E from the $\ell+1$ size ℓ subgroups of $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$.
4. For a point P on en elliptic curve, write φ_{P} for the isogeny with kernel $\langle P\rangle$. It suffices to show that

$$
(E /\langle A\rangle) /\left\langle\varphi_{A}(B)\right\rangle=(E /\langle B\rangle) /\left\langle\varphi_{B}(A)\right\rangle=E /\langle A, B\rangle
$$

as we then get a commutative diagram

Observe that A and B have coprime orders, so that $B \notin\langle A\rangle$ and $A \notin\langle B\rangle$. In particular, the image $B+\langle A\rangle$ of B under φ_{A} is a point of $E /\langle A\rangle$ of the same order as B. Define Λ by

$$
E / \Lambda=(E /\langle A\rangle) /\left\langle\phi_{A}(B)\right\rangle=(E /\langle A\rangle) /\langle B+\langle A\rangle\rangle
$$

Then clearly

$$
\Lambda \subseteq\langle A, B\rangle
$$

and as $B+\langle A\rangle$ has the same order as B, the cardinalities are the same, hence

$$
\Lambda=\langle A, B\rangle
$$

