Quantum Algorithms Exercises

Taken from Ronald de Wolf’s Quantum Computing lecture notes

. Construct a CNOT gate from two Hadamard gates and one controlled-Z (the controlled-Z
gate maps |11) — —|11) and acts like the identity on the 3 other basis states).

. Prove the quantum no-cloning theorem: there does not exist a 2-qubit unitary U that maps

9)10) = [9)|¢)

for every qubit |p). Hint: Consider what U has to do when |¢) = |0), when |¢) = [1), and when |$) is a

superposition of these two.

. Prove that an EPR-pair % (|00) 4 |11)) is an entangled state, i.e., that it cannot be written
as the tensor product of two separate qubits.

. Use Shor’s algorithm to find the period of the function f(a) = 7* mod 10, using a Fourier
transform over ¢ = 128 elements. Write down all intermediate superpositions of the algorithm
for this case (don’t just copy the general expressions form the notes). You may assume you're
lucky, so the first run of the algorithm already gives a b = cq/r where ¢ is coprime with r.

. Let x = xg...xn_1 be a sequence of distinct integers, where N = 2. We can query these
in the usual way, i.e., we can apply unitary O, : |7,0) — |i,z;), as well as its inverse. The
minimum of z is defined as min{z; | i € {0,...,N — 1}}. Give a quantum algorithm that
finds (with probability > 2/3) an index achieving the minimum, using at most O(v/N log N)
queries to the input. Hint: Start with m = x; for a random i, and repeatedly use Grover’s algorithm to
find an index j such that x; < m and update m = z;. Continue this until you can find no element smaller
than m, and analyze the number of queries of this algorithm. You are allowed to argue about this algorithm

”

on a high level (i.e., things like “use Grover to search for a j such that...” are OK), no need to write out

complete circuits.

. Consider an undirected graph G = (V, E), with vertex set V = {1,...,n} and edge-set E.
We say G is connected if, for every pair of vertices i,j € V, there is a path between ¢ and
J in the graph. The adjacency matriz of G is the n x n Boolean matrix M where M;; = 1
iff (i,5) € E (note that M is a symmetric matrix because G is undirected). Suppose we are
given input graph G in the form of a unitary that allows us to query whether an edge (i, 7)
is present in GG or not:

Owm :14,7,b) — |i,7,0 @ M;j).

(a) Assume G is connected. Suppose we have a set A of edges which we already know to be
in the graph (so A C E; you can think of A as given classically, you don’t have to query
it). Let G4 = (V, A) be the subgraph induced by only these edges, and suppose G4 is
not connected, so it consists of ¢ > 1 connected components. Call an edge (i,j) € F



(b)
()

“good” if it connects two of these components. Give a quantum algorithm that finds a
good edge with an expected number of O(n/+/c — 1) queries to M.

Give a quantum algorithm that uses at most O(n3/2) queries to M and decides (with
success probability at least 2/3) whether G is connected or not. This result is due to [2].

Show that classical algorithms for deciding (with success probability at least 2/3) whether
G is connected, need to make Q(n?) queries to M.

7. Let A, B, and C be n x n matrices with real entries. We’d like to decide whether or not

AB

= C. Of course, you could multiply A and B and compare the result with C, but matrix

multiplication is expensive (the current best algorithm takes time roughly O(n?3%)).

(a)

Give a classical randomized algorithm that verifies whether AB = C' (with success prob-
ability at least 2/3) using O(n?) steps, using the fact that matrix-vector multiplication
can be done in O(n2) steps. Hint: Choose a uniformly random vector v € {0,1}", calculate ABv

and Cv, and check whether these two vectors are the same. This result is by Freivalds [5].

Show that if we have query-access to the entries of the matrices (i.e., oracles that map
i,7,0 — 4,7, A; ; and similarly for B and C'), then any classical algorithm with small
error probability needs at least n? queries to detect a difference between AB and C.
Hint: Consider the case A =1.

Give a quantum walk algorithm that verifies whether AB = C' (with success probability
at least 2/3) using O(n5/3) queries to matrix-entries. Hint: Modify the algorithm for collision-
finding: use a random walk on the Johnson graph J(n,r), where each vertex corresponds to a set R C [n]
of size r, and that vertex is marked if there are i,j5 € R such that (AB);; # Cij. This result is by
Buhrman and Spalek [1].
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