Multivariate Quadratic Public-Key Cryptography Part 3: Small Field Schemes

Bo-Yin Yang

Academia Sinica

PQCrypto Executive Summer School 2017
Eindhoven, the Netherlands
Friday, 23.06.2017
Oil-Vinegar Polynomials [Patarin 1997]

Let \mathbb{F} be a (finite) field. For $o, v \in \mathbb{N}$ set $n = o + v$ and define

$$p(x_1, \ldots, x_n) = \sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij} \cdot x_i \cdot x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij} \cdot x_i \cdot x_j + \sum_{i=1}^{n} \gamma_i \cdot x_i + \delta$$

$v \times v$ terms $v \times o$ terms linear terms

x_1, \ldots, x_v: Vinegar variables x_{v+1}, \ldots, x_n: Oil variables, no $o \times o$ terms.

If we randomly set x_1, \ldots, x_v, result is linear in x_{v+1}, \ldots, x_n

(Unbalanced) Oil-Vinegar matrix

\tilde{p} the homogeneous quadratic part of $p(x_1, \ldots, x_n)$ can be written as quadratic form $\tilde{p}(x) = x^T \cdot M \cdot x$ with

$$M = \begin{pmatrix}
*_{v \times v} & *_{o \times v} \\
*_{v \times o} & 0_{o \times o}
\end{pmatrix}$$

where $*$ denotes arbitrary entries subject to symmetry.
Inversion of the UOV central map

Let each of o components of a UOV central map be a UOV polynomial.

After guessing Vinegar variables

When we guess the Vinegar variables x_1, \ldots, x_v, we get o linear equations in the o Oil variables $x_{v+1}, \ldots, x_n \Rightarrow$ recovered by (Gaussian) elimination

If the system has no solution?

Just choose other values for the Vinegar variables x_1, \ldots, x_v and try again.
Inversion of the UOV central map

Let each of \(o \) components of a UOV central map be a UOV polynomial.

After guessing Vinegar variables

When we guess the Vinegar variables \(x_1, \ldots, x_v \), we get \(o \) linear equations in the \(o \) Oil variables \(x_{v+1}, \ldots, x_n \) \(\Rightarrow \) recovered by (Gaussian) elimination

Toy Example in \(\mathbb{F} = \text{GF}(7) \) with \(o = v = 2 \)

- \(Q = (f^{(1)}, f^{(2)}) \) with

 \[
 f^{(1)}(x) = 2x_1^2 + 3x_1x_2 + 6x_1x_3 + x_1x_4 + 4x_2^2 + 5x_2x_4 + 3x_1 + 2x_2 + 5x_3 + x_4 + 6, \\
 f^{(2)}(x) = 3x_1^2 + 6x_1x_2 + 5x_1x_4 + 3x_2^2 + 5x_2x_3 + x_2x_4 + 2x_1 + 5x_2 + 4x_3 + 2x_4 + 1.
 \]

- Goal: Find a pre image \(Q^{-1}(y), y = (3, 4) \)
- Choose random values for \(x_1 \) and \(x_2 \), e.g. \((x_1, x_2) = (1, 4) \)

 \[
 \tilde{f}^{(1)}(x_3, x_4) = 4x_3 + x_4 + 4 = w_1 = 3, \quad \tilde{f}^{(2)}(x_3, x_4) = 3x_3 + 4x_4 = w_2 = 4
 \]

- The pre image of \(y \) is \(x = (1, 4, 1, 2) \).
Operations of UOV

Key Generation

Take a UOV central map Q and invertible $S : \mathbb{F}^n \rightarrow \mathbb{F}^n$. $\mathcal{P} = Q \circ S$.

Signature Generation

1. Given: message d, take its hash $y = H(d)$ under $H : \{0, 1\}^* \rightarrow \mathbb{F}^o$.
2. Compute a pre-image $x \in \mathbb{F}^n$ of y under the central map Q
 - Choose random values for the Vinegar variables x_1, \ldots, x_v and substitute them into the central map polynomials $f^{(1)}, \ldots, f^{(o)}$
 - Solve the resulting linear system for the Oil variables x_{v+1}, \ldots, x_n
 - If the system has no solution, choose other values for the Vinegar variables and try again.
3. Compute the signature $w \in \mathbb{F}^n$ by $w = S^{-1}(x)$.
Operations of UOV

Key Generation
Take a UOV central map Q and invertible $S : \mathbb{F}^n \to \mathbb{F}^n$. $P = Q \circ S$.

Signature Generation
1. Given: message d, take its hash $y = \mathcal{H}(d)$ under $\mathcal{H} : \{0, 1\}^* \to \mathbb{F}_o$.
2. Compute a pre-image $x \in \mathbb{F}^n$ of y under the central map Q.
3. Compute the signature $w \in \mathbb{F}^n$ by $w = S^{-1}(x)$.

Signature Verification
Given: message d, signature $w \in \mathbb{F}^n$
1. Compute $z = \mathcal{H}(d)$.
2. Compute $z' = P(w)$.
Accept the signature $\iff z = z'$.
Kipnis-Shamir OV attack when $o = v$

\[
\mathcal{O} := \{ x \in \mathbb{F}^n : x_1 = \ldots = x_v = 0 \} \quad \text{“Oilspace”}
\]

\[
\mathcal{V} := \{ x \in \mathbb{F}^n : x_{v+1} = \ldots = x_n = 0 \} \quad \text{“Vinegarspace”}
\]

Let E, F be invertible “OV-matrices”, i.e. $E, F = \begin{pmatrix} \ast & \ast \\ \ast & 0 \end{pmatrix}$ Then $E \cdot \mathcal{O} \subset \mathcal{V}$. Since the two has the same rank, equality holds, so $(F^{-1} \cdot E) \cdot \mathcal{O} = \mathcal{O}$, i.e. \mathcal{O} is an invariant subspace of $F^{-1} \cdot E$.
Kipnis-Shamir OV attack when $o = \nu$

\[O := \{ x \in \mathbb{F}^n : x_1 = \ldots = x_\nu = 0 \} \quad \text{“Oilspace”} \]

\[V := \{ x \in \mathbb{F}^n : x_{\nu+1} = \ldots = x_n = 0 \} \quad \text{“Vinegarspace”} \]

Let E, F be invertible “OV-matrices”, i.e. $E, F = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}$ Then $E \cdot O \subset V$. Since the two has the same rank, equality holds, so $(F^{-1} \cdot E) \cdot O = O$, i.e. O is an invariant subspace of $F^{-1} \cdot E$.

Common Subspaces

Let H_i be the matrix representing the homogeneous quadratic part of the i-th public polynomial. Then we have $H_i = S^T \cdot E_i \cdot S$, i.e. $TS^{-1}(O)$ is an invariant subspace of the matrix $(H_j^{-1} \cdot H_i)$, and we find S^{-1}.
Kipnis-Shamir OV attack when $o = v$

\[O := \{ x \in \mathbb{F}^n : x_1 = \ldots = x_v = 0 \} \quad \text{“Oilspace”} \]

\[V := \{ x \in \mathbb{F}^n : x_{v+1} = \ldots = x_n = 0 \} \quad \text{“Vinegarspace”} \]

Let E, F be invertible “OV-matrices”, i.e. $E, F = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}$ Then $E \cdot O \subset V$. Since the two has the same rank, equality holds, so \((F^{-1} \cdot E) \cdot O = O\), i.e. O is an invariant subspace of $F^{-1} \cdot E$.

Common Subspaces

Let H_i be the matrix representing the homogeneous quadratic part of the i-th public polynomial. Then we have $H_i = S^T \cdot E_i \cdot S$, i.e. $TS^{-1}(O)$ is an invariant subspace of the matrix $(H_j^{-1} \cdot H_i)$, and we find S^{-1}.

Summary of the Standard UOV Attack

- for $v \leq o$, breaks the balanced OV scheme in polynomial time.
- For $v > o$ the complexity of the attack is about $q^{v-o} \cdot o^4$.

\Rightarrow Choose $v \approx 2 \cdot o$ (unbalanced Oil and Vinegar (UOV)) [KP99]
Other Attacks

- **Collision Attack**: \(o \geq \frac{2^{2^\ell}}{\log_2(q)} \) for \(\ell \)-bit security.

- **Direct Attack**: Try to solve the public equation \(P(w) = z \) as an instance of the MQ-Problem. The public systems of UOV behave much like random systems, but they are highly underdetermined \((n = 3 \cdot m)\)

Result [Thomae]: A multivariate system of \(m \) equations in \(n = \omega \cdot m \) variables can be solved in the same time as a determined system of \(m - \lceil \omega \rceil + 1 \) equations.

\[\Rightarrow \quad m \text{ has to be increased by 2.} \]
Other Attacks

- **Collision Attack**: \(o \geq \frac{2^{2\ell}}{\log_2(q)} \) for \(\ell \)-bit security.

- **Direct Attack**: Try to solve the public equation \(P(w) = z \) as an instance of the MQ-Problem. The public systems of UOV behave much like random systems, but they are highly underdetermined \((n = 3 \cdot m) \Rightarrow m \) has to be increased by 2.

- **UOV-Reconciliation attack**: Try to find a linear transformation \(S \) (“good keys”) which transforms the public matrices \(H_i \) into the form of UOV matrices

\[
(S^T)^{-1} \cdot H_i \cdot S^{-1} = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}
\]

\(\Rightarrow \) Each Zero-term yields a quadratic equation in the elements of \(T \).
\(\Rightarrow \) \(T \) can be recovered by solving several MQ systems (the hardest with \(v \) variables, \(m \) equations).
Summary of UOV

Safe Parameters for $\text{UOV}(\mathbb{F}, o, v)$

<table>
<thead>
<tr>
<th>security level (bit)</th>
<th>scheme</th>
<th>public key size (kB)</th>
<th>private key size (kB)</th>
<th>hash size (bit)</th>
<th>signature (bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>$\text{UOV}(\mathbb{F}_{16}, 40, 80)$</td>
<td>144.2</td>
<td>135.2</td>
<td>160</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>$\text{UOV}(\mathbb{F}_{256}, 27, 54)$</td>
<td>89.8</td>
<td>86.2</td>
<td>216</td>
<td>648</td>
</tr>
<tr>
<td>100</td>
<td>$\text{UOV}(\mathbb{F}_{16}, 50, 100)$</td>
<td>280.2</td>
<td>260.1</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>$\text{UOV}(\mathbb{F}_{256}, 34, 68)$</td>
<td>177.8</td>
<td>168.3</td>
<td>272</td>
<td>816</td>
</tr>
<tr>
<td>128</td>
<td>$\text{UOV}(\mathbb{F}_{16}, 64, 128)$</td>
<td>585.1</td>
<td>538.1</td>
<td>256</td>
<td>768</td>
</tr>
<tr>
<td></td>
<td>$\text{UOV}(\mathbb{F}_{256}, 45, 90)$</td>
<td>409.4</td>
<td>381.8</td>
<td>360</td>
<td>1,080</td>
</tr>
<tr>
<td>192</td>
<td>$\text{UOV}(\mathbb{F}_{16}, 96, 192)$</td>
<td>1,964.3</td>
<td>1,786.7</td>
<td>384</td>
<td>1,152</td>
</tr>
<tr>
<td></td>
<td>$\text{UOV}(\mathbb{F}_{256}, 69, 138)$</td>
<td>1,464.6</td>
<td>1,344.0</td>
<td>552</td>
<td>1,656</td>
</tr>
<tr>
<td>256</td>
<td>$\text{UOV}(\mathbb{F}_{16}, 128, 256)$</td>
<td>4,644.1</td>
<td>4,200.3</td>
<td>512</td>
<td>1,536</td>
</tr>
<tr>
<td></td>
<td>$\text{UOV}(\mathbb{F}_{256}, 93, 186)$</td>
<td>3,572.9</td>
<td>3,252.2</td>
<td>744</td>
<td>2,232</td>
</tr>
</tbody>
</table>

What we know today about UOV

- **unbroken since 1999** \Rightarrow **high confidence in security**
- **not the fastest multivariate scheme**
- **very large keys, (comparably) large signatures**
Rainbow Digital Signature

Ding and Schmidt, 2004

- Patented by Ding
- May have had patent by T.-T. Moh (expired)
- TTS is its variant with sparse central map
Rainbow Digital Signature

Ding and Schmidt, 2004

- Finite field \(\mathbb{F} \), integers \(0 < v_1 < \cdots < v_u < v_{u+1} = n \).
- Set \(V_i = \{1, \ldots, v_i\} \), \(O_i = \{v_i + 1, \ldots, v_{i+1}\} \), \(O_i = v_{i+1} - v_i \).
- Central map \(Q \) consists of \(m = n - v_1 \) polynomials \(f^{v_1+1}, \ldots, f^{(n)} \) of the form

\[
f^{(k)} = \sum_{i,j \in V_\ell} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \in V_\ell, j \in O_\ell} \beta_{ij}^{(k)} x_i x_j + \sum_{i \in V_\ell \cup O_\ell} \gamma_i^{(k)} x_i + \delta^{(k)},
\]

with coefficients \(\alpha_{ij}^{(k)} \), \(\beta_{ij}^{(k)} \), \(\gamma_i^{(k)} \) and \(\delta^{(k)} \) randomly chosen from \(\mathbb{F} \) and \(\ell \) being the only integer such that \(k \in O_\ell \).

- Choose randomly two affine (or linear) transformations \(T : \mathbb{F}^m \to \mathbb{F}^m \) and \(S : \mathbb{F}^n \to \mathbb{F}^n \).

- **public key**: \(\mathcal{P} = T \circ Q \circ S : \mathbb{F}^n \to \mathbb{F}^m \)

- **private key**: \(T, Q, S \)
Idea of Rainbow

Inversion of the central map

- Invert the single UOV layers recursively.
- Use the variables of the \(i \)-th layer as Vinegars of the \(i + 1 \)-th layer.

Illustration: Rainbow with two layers

\[
F(k) = \begin{cases}
 v_1 & \text{if } v_1 + 1 \leq k \leq v_2 \\
 v_2 & \text{if } v_2 + 1 \leq k \leq n
\end{cases}
\]
Idea of Rainbow

Inversion of the central map

- Invert the single UOV layers recursively.
- Use the variables of the i-th layer as Vinegars of the $i + 1$-th layer.

Input: Rainbow central map $Q = (f^{(v_1+1)}, \ldots, f^{(n)})$, vector $y \in \mathbb{F}^m$.

Output: vector $x \in \mathbb{F}^n$ with $Q(x) = y$.

1. Choose random values for the variables x_1, \ldots, x_{v_1} and substitute these values into the polynomials $f^{(i)}$ ($i = v_1 + 1, \ldots, n$).
2. for $\ell = 1$ to u do
3. Perform Gaussian Elimination on the polynomials $f^{(i)}$ ($i \in O_\ell$) to get the values of the variables x_i ($i \in O_\ell$).
4. Substitute the values of x_i ($i \in O_\ell$) into the polynomials $f^{(i)}$ ($i = v_{\ell+1} + 1, \ldots, n$).
5. end for
Idea of Rainbow

Inversion of the central map
- Invert the single UOV layers recursively.
- Use the variables of the i-th layer as Vinegars of the $i + 1$-th layer.

Signature Generation from message d

1. Use a hash function $\mathcal{H} : \{0, 1\} \to \mathbb{F}^m$ to compute $z = \mathcal{H}(d) \in \mathbb{F}^m$
2. Compute $y = T^{-1}(z) \in \mathbb{F}^m$.
3. Compute a pre-image $x \in \mathbb{F}^n$ of y under the central map Q
4. Compute the signature $w \in \mathbb{F}^n$ by $w = S^{-1}(x)$.
Idea of Rainbow

Inversion of the central map

- Invert the single UOV layers recursively.
- Use the variables of the i-th layer as Vinegars of the $i + 1$-th layer.

Signature Generation from message d

1. Use a hash function $\mathcal{H} : \{0, 1\} \rightarrow \mathbb{F}^m$ to compute $z = \mathcal{H}(d) \in \mathbb{F}^m$
2. Compute $y = \mathcal{T}^{-1}(z) \in \mathbb{F}^m$.
3. Compute a pre-image $x \in \mathbb{F}^n$ of y under the central map Q
4. Compute the signature $w \in \mathbb{F}^n$ by $w = S^{-1}(x)$.

Signature Verification from message d, signature $z \in \mathbb{F}^n$

1. Compute $z = \mathcal{H}(d)$.
2. Compute $z' = P(w)$.

Accept the signature $z \iff w' = w$.
Security

Rainbow is an extension of UOV
⇒ All attacks against UOV can be used against Rainbow, too.

Additional structure of the central map allows several new attacks

- **MinRank Attack**: Look for linear combinations of the matrices H_i of low rank
- **HighRank Attack**: Look for the linear representation of the variables appearing the lowest number of times in the central polynomials.
- **Rainbow-Band-Separation Attack**: Variant of the UOV-Reconciliation Attack using the additional Rainbow structure [DY08]

Choosing Parameter Selection for Rainbow is interesting
MinRank Attack

Minors Version
Set all rank \(r + 1 \) minors of \(\sum_i \alpha_i H_i \) to 0.

Kernel Vector Guessing Version
- Guess a vector \(v \), let \(\sum_i \alpha_i H_i v = 0 \), hope to find a non-trivial solution.
- (If \(m > n \), guess \(\lceil \frac{m}{n} \rceil \) vectors.)
- Takes \(q^r m^3 / 3 \) time to find a \(r \)-dimensional subspace.

Accumulation of Kernels and Effective Rank
In the first stage of Rainbow, there are \(o_1 = v_2 - v_1 \) equations and \(v_2 \) variables. The rank should be \(v_2 \). But if your guess corresponds to \(x_1 = x_2 = \cdots = x_{v_1} = 0 \), then about \(1/q \) of the time we find a kernel. The easy way to see this is that there are \(q^{o_1-1} \) different kernels. We say that “effectively the rank is \(v_1 + 1 \)”.

B.-Y. Yang (Academia Sinica)
Rainbow Band Separation

Extension to UOV reconciliation to use the special Rainbow form.

\[n \text{ variables, } n + m - 1 \text{ quadratic equations} \]

1. Let \(w_i := w_i' - \lambda_i w_n' \) for \(i \leq v \), \(w_i = w_i' \) for \(i > v \). Evaluate \(z \) in \(w' \).
2. Find \(m \) equations by letting all \((w_n')^2\) terms vanish; there are \(v \) of \(\lambda_i \)'s.
3. Set all cross-terms involving \(w_n' \) in
 \[z_1 - \sigma_1^{(1)} z_{v+1} - \sigma_2^{(1)} z_{v+2} - \cdots - \sigma_o^{(1)} z_m \]
 to be zero and find \(n - 1 \) more equations.
4. Solve \(m + n - 1 \) quadratic equations in \(o + v = n \) unknowns.
5. Repeat, e.g. next set \(w_i' := w_i'' - \lambda_i w_{n-1}'' \) for \(i < v \), and let every \((w_{n-1}'')^2\) and \(w_n'' w_{n-1}'' \) term be 0. Also set
 \[z_2 - \sigma_1^{(2)} z_{v+1} - \sigma_2^{(2)} z_{v+2} - \cdots - \sigma_o^{(2)} z_m \]
 to have a zero second-to-last column. \([2m + n - 2 \text{ equations in } n \text{ unknowns.} \)\]
Rainbow - Summary

- no weaknesses found since 2007
- efficient, much faster than RSA
- suitable for low cost devices
- shorter signatures and smaller key sizes than UOV

Parameters

<table>
<thead>
<tr>
<th>security level (bit)</th>
<th>parameters</th>
<th>public key size (kB)</th>
<th>private key size (kB)</th>
<th>hash size (bit)</th>
<th>signature (bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>$F_{16}, 20, 20, 20$</td>
<td>33.4</td>
<td>22.3</td>
<td>160</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>$F_{256}, 19, 12, 13$</td>
<td>25.3</td>
<td>19.3</td>
<td>200</td>
<td>352</td>
</tr>
<tr>
<td>100</td>
<td>$F_{16}, 25, 25, 25$</td>
<td>65.9</td>
<td>43.2</td>
<td>200</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>$F_{256}, 27, 16, 16$</td>
<td>57.2</td>
<td>44.3</td>
<td>256</td>
<td>472</td>
</tr>
<tr>
<td>128</td>
<td>$F_{16}, 32, 32, 32$</td>
<td>136.6</td>
<td>87.6</td>
<td>256</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>$F_{31}, 28, 28, 28$</td>
<td>123.2</td>
<td>74.5</td>
<td>280</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>$F_{256}, 36, 21, 22$</td>
<td>136.0</td>
<td>102.5</td>
<td>344</td>
<td>632</td>
</tr>
<tr>
<td>192</td>
<td>$F_{16}, 48, 48, 48$</td>
<td>475.9</td>
<td>301.8</td>
<td>384</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>$F_{31}, 44, 40, 40$</td>
<td>360.1</td>
<td>245.2</td>
<td>420</td>
<td>630</td>
</tr>
<tr>
<td>256</td>
<td>$F_{16}, 64, 64, 64$</td>
<td>1,194.4</td>
<td>763.9</td>
<td>512</td>
<td>776</td>
</tr>
</tbody>
</table>

B.-Y. Yang (Academia Sinica)
References

Pa97 J. Patarin: The oil and vinegar signature scheme, presented at the Dagstuhl Workshop on Cryptography (September 97)

Multivariates Part 4: Implementation on Modern CPUs
Some Lessons from the Last 14 Years

Bo-Yin Yang
Academia Sinica

PQCrypto Executive Summer School 2017
Eindhoven, the Netherlands
Friday, 23.06.2017
Why are MPKCs Worth Studying?

- Diversification
- Efficiency
Why are MPKCs Worth Studying?

- Diversification: Future-proof against quantum computers.
- Efficiency: Faster than “traditional” PKCs.
Why are MPKCs Worth Studying?

- **Diversification:** Future-proof against quantum computers.
- **Efficiency:** Faster than “traditional” PKCs.
 ... Maybe.
Rate-Determining Mechanisms for MPKCs

Key Generation
- Evaluation of coefficients

Public Maps
- Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$

Private Maps
Rate-Determining Mechanisms for MPKCs

Key Generation

Evaluation of coefficients:
- Often as differentials of public map.
- Sometimes, by brute force!

Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$

Private Maps
Rate-Determining Mechanisms for MPKCs

<table>
<thead>
<tr>
<th>Key Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of coefficients</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$ usually as a matrix multiplying the vector of monomials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private Maps</th>
</tr>
</thead>
</table>
Rate-Determining Mechanisms for MPKCs

Key Generation
Evaluation of coefficients

Public Maps
Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$

Private Maps
- **UOV**: Solving linear systems of equations in $\mathbb{K} = \mathbb{F}_q$
- **Rainbow**: Like UOV plus mini “Public Map”
- **C^***: High powers in $\mathbb{L} = \mathbb{F}_{q^n}$
- **HFE**: Equation solving in $\mathbb{L} = \mathbb{F}_{q^n}$ (general arithmetic)
- **kHFE**: Like HFE plus an elimination in \mathbb{L}
Practical Side of Computing

Moore’s law

Transistor budget doubles every 18–24 months

Memory Latencies vs Clock Speeds

<table>
<thead>
<tr>
<th>Year</th>
<th>Hi-End CPU</th>
<th>MHz</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>Z80</td>
<td>2</td>
<td>500ns</td>
</tr>
<tr>
<td>1984</td>
<td>80286</td>
<td>10</td>
<td>400ns</td>
</tr>
<tr>
<td>1989</td>
<td>80486</td>
<td>40</td>
<td>300ns</td>
</tr>
<tr>
<td>1994</td>
<td>Pentium</td>
<td>100</td>
<td>250ns</td>
</tr>
<tr>
<td>1999</td>
<td>Athlon</td>
<td>750</td>
<td>200ns</td>
</tr>
<tr>
<td>2004</td>
<td>Pentium 4</td>
<td>3800</td>
<td>160ns</td>
</tr>
<tr>
<td>2009</td>
<td>Core i7</td>
<td>3200</td>
<td>130ns</td>
</tr>
<tr>
<td>2014</td>
<td>Core i7</td>
<td>3400</td>
<td>120ns</td>
</tr>
</tbody>
</table>
Are MPKCs Still Fast?

- Progress in high-precision arithmetic
 - In 80’s, CPUs computed one 32-bit integer product every 15–20 cycles
 - In 2000, x86 CPUs computed one 64-bit product every 3–10 cycles
 - Core i7’s today produces one 128-bit product every 1 cycle
 - Marvelous for ECC (and RSA)

- In contrast, progress in \mathbb{F}_{2^q} arithmetic is slow
 - 6502 or 8051: a dozen cycles via three table look-ups
 - Modern x86: roughly same that many cycles

- Moore’s law favors computation, not so much memories
 - Memory access speed increased at a snail’s pace

- Wang et al. made life even harder for MPKCs
 - Forcing longer message digests
 - RSA untouched
Questions We Want to Answer

- Can all the extras on modern commodity CPUs help MPKCs as well?
- How have architectural changes affected implementation choices?
- If so, how do MPKCs compare to traditional PKCs today?
SSE, the X86 Vector Instruction Set Extensions

- As packed 8-, 16-, 32- or 64-bit operands
- Move xmm to/from xmm, memory (even unaligned), x86 registers
- Shuffle data and pack/unpack on vector data
- Bit-wise logical operations like AND, OR, NOT, XOR
- Shift left, right logical/arithmetic by units, or entire xmm byte-wise
- Add/subtract on 8-, 16-, 32- and 64-bits
- Multiply 16-bit and 32-bits in various ways
- VPSHUFBD (32 nibble-to-byte lookup in 1 cycle) and PALIGNR (256-bit bytewise rotation) quite powerful
(V)PSHUFB

- “Packed Shuffle Bytes”
 - Source: \((x_0, \ldots, x_{15})\)
 - Destination: \((y_0, \ldots, y_{15})\)
 - Result: \((y_{x_0 \mod 32}, \ldots, y_{x_{15} \mod 32})\), treating \(y_{16}, \ldots, y_{31}\) as 0

- \(VPSHUFB = \text{two individual PSHUFBs}\)
Speeding Up MPKCs over \mathbb{F}_{16}

- $TT : 16 \times 16$ table, with $TT_{i,j} = i \times j, 0 \leq i, j < 16$
- To compute $av, a \in \mathbb{F}_{16}, v \in (\mathbb{F}_{16})^{16}$
 - $xmm \leftarrow$ a-th row of TT
 - $av \leftarrow$ PSHUFB xmm, v
- Works similarly for $a \in (\mathbb{F}_{16})^2, v \in (\mathbb{F}_{16})^{32}$
 - Need to unpack, do PSHUFBS, then pack
- Delivers $2 \times$ performance over simple bit slicing in private map evaluation of rainbow and TTS
- Some other platforms also have similar instructions
 - AMD’s SSE5: PPERM (superset of PSHUFB)
 - IBM POWER AltiVec/VMX: PERMU
 - ARM’s TBL
Speeding Up MPKCs over \(\mathbb{F}_{256} \)

Nibble Slicing

- \(TL : 256 \times 16 \) table, with \(TL_{i,j} = i \times j, 0 \leq i < 256, 0 \leq j < 16 \)
- \(TH : 256 \times 16 \) table, with \(TH_{i,j} = i \times (16j), 0 \leq i < 256, 0 \leq j < 16 \)
- To compute \(a\vec{v}, a \in \mathbb{F}_{256}, \vec{v} \in (\mathbb{F}_{256})^{16} \)
 - \(a\vec{v}_i = a(16\lfloor \vec{v}_i/16 \rfloor) + a(\vec{v}_i \mod 16), 0 \leq i < 16 \)
- \(\vec{v}'_i \leftarrow a(16\lfloor \vec{v}_i/16 \rfloor) \)
 - \(\vec{v}'_i \leftarrow \lfloor \vec{v}_i/16 \rfloor \) (SHIFT)
 - \(\vec{xmm} \leftarrow \text{a-th row of } TH \)
 - \(\vec{v}' \leftarrow \text{PSHUFB } \vec{xmm}, \vec{v}' \)
- \(\vec{v}_i \leftarrow a(\vec{v}_i \mod 16) \)
 - \(\vec{v}_i \leftarrow \vec{v}_i \mod 16 \) (AND)
 - \(\vec{xmm} \leftarrow \text{a-th row of } TL \)
 - \(\vec{v} \leftarrow \text{PSHUFB } \vec{xmm}, \vec{v} \)
- \(a\vec{v} \leftarrow \vec{v} + \vec{v}' \) (OR)
Arithmetic in \mathbb{F}_{2^k}

- **PCLMULQDQ**
 - Of course you use it if you can, sheesh.

- Multiplication Tables in Memory (Parallel)

- Log/Exp Tables to a generator g

- Bit-Slicing
Arithmetic in \mathbb{F}_{2^k}

PCLMULQDQ

Of course you use it if you can, sheesh.

Multiplication Tables in Memory (Parallel)

- One VPSHUFB per many multiplications in \mathbb{F}_{16}
- How do we do time-constant Table Lookups?

Log/Exp Tables to a generator g

Bit-Slicing
Arithmetic in \mathbb{F}_{2^k}

PCLMULQDQ

Of course you use it if you can, sheesh.

Multiplication Tables in Memory (Parallel)

Log/Exp Tables to a generator g

- Compute xy as $g^{\log_g x + \log_g y}$ if neither is zero.
- 3 lookups per mult, some logs can be pre-computed
- Time-constant but method of last choice.

Bit-Slicing
Arithmetic in \mathbb{F}_{2^k}

PCLMULQDQ

Of course you use it if you can, sheesh.

Multiplication Tables in Memory (Parallel)

Log/Exp Tables to a generator g

Bit-Slicing

- Highly parallel — 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like $1 + (\text{word size})$
- only good for \mathbb{F}_2 and \mathbb{F}_4.
Arithmetic in \mathbb{F}_{2^k}

PCLMULQDQ

Of course you use it if you can, sheesh.

Multiplication Tables in Memory (Parallel)

For time-constancy, we can build Multiplication Tables on the Fly.

Log/Exp Tables to a generator g

Bit-Slicing

- Highly parallel — 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like $1 + \text{ (word size)}$
- only good for \mathbb{F}_2 and \mathbb{F}_4.
Some Interesting Design Choices

System and Architecture-Dependent Stuff

- Key Generation
- Matrix-to-Vector-Multiply and Evaluating Public Maps
- Tower Field Arithmetic
- System- and Equation-Solving
 - Pre-scripted Gröbner Basis Computation
 - Iterative Methods vs. Gaussian Eliminations
 - Cantor-Zassenhaus vs. Berlekamp
Key Generation

Matsumoto-Imai’s notation:
\[z_k := \sum_i w_i \left[P_{ik} + Q_{ik} w_i + \sum_{j<i} R_{ijk} w_j \right]. \]

Usual Way: as differentials of public map \(\mathcal{P} = (p_1, \ldots, p_m) \)

for \(q > 2 \), we choose any \(a \neq 0, 1 \) and get

\[Q_{ik} := (a(a−1))^{-1} (p_k (av_i) - ap_k (v_i)) \]
\[P_{ik} := p_k (v_i) - Q_{ik} \]
\[R_{ijk} := p_k (v_i + v_j) - Q_{ik} - Q_{jk} - P_{ik} - P_{jk} \]

For \(\mathbb{F}_2 \), it becomes

\[P_{ik} := p_k (v_i) \]
\[R_{ijk} := p_k (v_i + v_j) - P_{ik} - P_{jk} \]

\((v_i \) means the unit vector on the \(i \)-th direction)
Evaluating Public Maps

Naive Way (and on µP’s still)

\[z_k = \sum_i w_i \left[P_{ik} + Q_{ik}w_i + \sum_{i<j} R_{ijk}w_j \right] \]

For better memory access pattern

1. \(c \leftarrow [w^T, (w_iw_j)_{i \leq j}]^T \)
2. \(z \leftarrow Pc \), where \(P \) is the \(m \times n(n + 3)/2 \) public-key matrix

How to do Matrix-to-Vector mults

Microcontrollers Naively
Somewhat newer CPUs Bit-slicing for \(\mathbb{F}_{2^k} \)
With more cache Big look-up tables (with nibble-slicing)
Newest architectures More or less naively, with SSE*
MPKCs over Odd Prime Fields

B.-Y. Yang (Academia Sinica)
Are you out of your mind?

- **XOR** is easy, addition mod q is not.
- How can it possibly be faster?
MPKCs over Odd Prime Fields

Are you out of your mind?
- XOR is easy, addition mod q is not.
- How can it possibly be faster?

It’s more than about speed
- Good for defending against Gröbner basis attacks
 - The field equation $X^q - X = 0$ becomes much less useful
- SSE* gives you parallel arithmetic on small integers,
 - and you only need to parallelize 4 or 8 at a time.
- Do you know how many 18-bit multipliers there are on an FPGA?
Basic Building Blocks for Speeding Up Odd MPKCs

PMULHRSW

- Takes upper half in a rounded signed product of two 16-bit words,
 \[\left\lceil xy/2^{16} \right\rceil \], good for reduction mod \(q \)

VPMADDUSBW

- Packed Multiply and Add, Unsigned and Signed Byte to Word
 - **Source**: \((x_0, \ldots, x_{31})\) Unsigned
 - **Destination**: \((y_0, \ldots, y_{31})\) Signed
 - **Result**: \((x_0y_0 + x_1y_1, x_2y_2 + x_3y_3, \ldots, x_{30}y_{30} + x_{31}y_{31})\)

- Helpful in evaluating \(z = Pc \), piece by piece
 - Let \(Q \) be a \(16 \times 2 \) submatrix of \(P \)
 - \(d^T \) be the corresponding \(2 \times 1 \) submatrix of \(c \)
 - \(r1 \leftarrow (Q_{11}, Q_{12}, Q_{21}, Q_{22}, \ldots, Q_{15,1}, Q_{15,2}) \)
 - \(r2 \leftarrow (d_1, d_2, d_1, d_2, \ldots, d_1, d_2) \)
 - VPMADDUSBW \(r1, r2 \) computes \(Qd \)
 - Continue in 16-bits until reduction mod \(q \) needed.

- Saves a few mod \(q \) operations and delivers \(1.5 \times \) performance
Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute $a\mathbf{v}$ for each column \mathbf{v} in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_{4}$
- Obviously minimizes the need for operations
Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute av for each column v in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_{4}$
- Obviously minimizes the need for operations

Unbelievably ...

Slower than SSE on any modern CPU!
Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute av for each column v in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_{4}$
- Obviously minimizes the need for operations

Unbelievably ...

Slower than SSE on any modern CPU!

When L2 isn’t fast enough

- SSE instructions have a reverse throughput of 1 cycle today
- memory access is linear when using SSE
- L2 latency 20+ cycles; LUT reads not regular enough
- No way around this today :(
Remarks on Getting More Performance

Laziness often leads to optimality

- Do not always need the tightest range
- The less reductions, the better!
- The less memory access, the better!
- The more regular memory access, the better!
- Packing \mathbb{F}_q-blocks into binary can use more bits than necessary as long as the map is injective and convenient to compute.
How to solve a medium-sized dense linear system?

- Wiedemann iterative solver for $Ax = b$
 - Compute zA^ib for some z
 - Compute minimal polynomial using Berlekamp-Massey
- Requires $O(2n^3)$ field multiplications
- Straightforward Gauss elimination requires $O(n^3/3)$

However, Wiedemann involves much less reductions modulo q

However, everything has to be constant-time

At the moment Gaussian beats Wiedemann.
To Solve Equation(s) in a Big Tower Field over \mathbb{F}_q

Scripted Gröbner Basis Computation

From 3 quadratic equations in 3 variables, we in succession run Gaussian eliminations on matrices of dimensions 3×10, 11×19, 8×16, 5×13, with many coefficients that we know to be zero in advance, to reach a degree-8 equation. You can call this a tailored matrix-\mathbb{F}_4.

Cantor-Zassenhaus (instead of Berlekamp)

1. Replace $u(X)$ by $\gcd(u(X), X^{q^k} - X)$ so that u splits in \mathbb{L}.
 - Compute and tabulate $X^d \mod u(X), \ldots, X^{2d-2} \mod u(X)$.
 - Compute $X^q \mod u(X)$ via square-and-multiply.
 - Compute and tabulate $X^{qi} \mod u(X)$ for $i = 2, 3, \ldots, d - 1$.
 - Compute $X^{qi} \mod u(X)$ for $i = 2, 3, \ldots, k$, then $X^{q^k} \mod u(X)$.
2. Do $\gcd\left(\nu(X)^{(q^k-1)/2} - 1, u(X)\right)$ for random $\nu(X)$ with $\deg \nu < \deg u$, to find nontrivial factor $\geq \frac{1}{2}$ of the time; repeat as needed.
To Solve Equation(s) in a Big Tower Field over \mathbb{F}_q

Scripted Gröbner Basis Computation

From 3 quadratic equations in 3 variables, we in succession run Gaussian eliminations on matrices of dimensions 3×10, 11×19, 8×16, 5×13, with many coefficients that we know to be zero in advance, to reach a degree-8 equation. You can call this a tailored matrix-\mathbb{F}_4.

Cantor-Zassenhaus (instead of Berlekamp)

1. Replace $u(X)$ by $\gcd(u(X), X^{q^k} - X)$ so that u splits in \mathbb{L}.
 1. Compute and tabulate $X^d \mod u(X), \ldots, X^{2d-2} \mod u(X)$.
 2. Compute $X^q \mod u(X)$ via square-and-multiply.
 3. Compute and tabulate $X^{qi} \mod u(X)$ for $i = 2, 3, \ldots, d - 1$.
 4. Compute $X^{qi} \mod u(X)$ for $i = 2, 3, \ldots, k$, then $X^{q^k} \mod u(X)$.

2. Toss everything away and repeat unless there is a single solution.
Anything else New For \mathbb{F}_{2^k}?
Anything else New For \mathbb{F}_{2^k}?

Not Really.
Anything else New For \mathbb{F}_{2^k}?

Not Really.

Ok, So we implemented some

- Additive-FFT based multiplication using (V)PSHUFB
- TRUNCATED Additive-FFT too

But no sense talking such with so many sado-masochistic bitslicers here!
Performance on Xeon E3-1245v3 (Haswell) 3.4GHz

Table: 128-bit MPKCs on Intel Haswell.

<table>
<thead>
<tr>
<th>schemes</th>
<th>gen-key()</th>
<th>sign()</th>
<th>verify()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M cycles</td>
<td>k cycles</td>
<td>k cycles</td>
</tr>
<tr>
<td>Rainbow(16,32,32,32)</td>
<td>154.7</td>
<td>89.9</td>
<td>22.8</td>
</tr>
<tr>
<td>Rainbow(31,28,28,28)</td>
<td>93.4</td>
<td>77.4</td>
<td>70.8</td>
</tr>
<tr>
<td>Rainbow(256,28,20,20)</td>
<td>581.0</td>
<td>121.6</td>
<td>19.0</td>
</tr>
<tr>
<td>PFLASH(16,96-1,64)</td>
<td>78.8</td>
<td>226.0</td>
<td>22.6</td>
</tr>
<tr>
<td>GUI(2,240,9,16,16,3)</td>
<td>484.2</td>
<td>4,445.4</td>
<td>197.6</td>
</tr>
<tr>
<td>GUI(4,120,17,8,8,2)</td>
<td>362.4</td>
<td>11,743.5</td>
<td>1,904.6</td>
</tr>
<tr>
<td>HmFEv(256,15,3,16)</td>
<td>201.7</td>
<td>1,497.8</td>
<td>15.7</td>
</tr>
<tr>
<td>MQDSS-31-64 a</td>
<td>1.827</td>
<td>8,510.6</td>
<td>5,752.6</td>
</tr>
<tr>
<td>ECDSA(NIST P256) b</td>
<td>0.286</td>
<td>377.1</td>
<td>901.5</td>
</tr>
<tr>
<td>Ed25519 b</td>
<td>0.066</td>
<td>61.0</td>
<td>185.1</td>
</tr>
<tr>
<td>RSA-2048 b</td>
<td>233.7</td>
<td>5,240.2</td>
<td>66.4</td>
</tr>
<tr>
<td>RSA-3072 b</td>
<td>844.4</td>
<td>15,400.9</td>
<td>119.3</td>
</tr>
</tbody>
</table>

a on Core i7-4770K (Haswell) 3.5GHz.
b eBACS on Xeon E3-1275 v3 (haswell) at 3.5GHz.
Continued: Non-PCLMULQDQ CPUs

We also implemented without PCLMULQDQ, using additive FFT and (V)PSHUFB.

Table: Benchmark of 128-bit MPKCs on SSE-only Platforms

<table>
<thead>
<tr>
<th>schemes</th>
<th>gen-key()</th>
<th>sign()</th>
<th>verify()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M cycles</td>
<td>k cycles</td>
<td>k cycles</td>
</tr>
<tr>
<td>PFLASH(16,96-1,64)</td>
<td>3,269</td>
<td>908.6</td>
<td>32.8</td>
</tr>
<tr>
<td>GUI(4,120,17,8,8,2)</td>
<td>510</td>
<td>121,287</td>
<td>1,583.6</td>
</tr>
</tbody>
</table>

Conclusions and Remarks
- It is very important to tune to your architecture.
- MPKCs still competitive speedwise
- Intel’s new vector instruction set did double the MPKC throughput.
Thanks for Listening!

- Questions or comments?