Fast Lattice-Based Encryption: Stretching SPRING

Charles Bouillaguet1 Claire Delaplace1,2 Pierre-Alain Fouque2 Paul Kirchner3

1CFHP team, CRISTAL, Université de Lille, France
2EMSEC team, IRISA, Université de Rennes 1, France
3École Normale Supérieure, Paris, France

PQCrypto, 2017
Motivation

Goal: Efficient (competitive with AES) PRF/PRG with strong design
Motivation

Goal: Efficient (competitive with AES) PRF/PRG with strong design

Lattice based PRF and PRG

Why?
- Strong design
- Proof of security assuming hard lattices problem
- Post Quantum Security

Issue
- PRF/PRG: deterministic primitives
- Lattice based cryptography: not deterministic
Motivation

Goal: Efficient (competitive with AES) PRF/PRG with strong design

Lattice based PRF and PRG

Why?
- Strong design
- Proof of security assuming hard lattices problem
- Post Quantum Security

Issue
- PRF/PRG: deterministic primitives
- Lattice based cryptography: not deterministic

Solution [BPR12]
- Derandomizing (Ring)-LWE
- Introduce a family of provably secure PRF under (Ring)-LWE assumption
Derandomizing RING-LWE

Polynomial Ring: $R_q = \mathbb{Z}_q[X]/(X^n + 1)$
$q \geq 2$ integer; n power of two

RING Learning With Error (RLWE)

- $s \in R_q$ secret
- e_i random independent errors (drawn from a discrete gaussian distribution)
- Distinguish $(a_i, a_i \cdot s + e_i)$ from uniform over $R_q \times R_q$

RING Learning With Rounding (RLWR)

- $2 \leq p \leq q$
- $S : R_q \rightarrow R_p$ rounding function
- $s \in R_q$ secret
- Distinguish $(a_i, S(a_i \cdot s))$ from uniform over $R_q \times R_p$
SPRING family of PRF

Polynomial Ring: \(R_q = \mathbb{Z}_q[X]/(X^n + 1) \)

Subset Product with Rounding over a RING

- Input: \(x = (x_1, \ldots, x_k) \in \{0, 1\}^k \)
- Secrets: \((a,s_1, \ldots, s_k) \in R_q^* \times (R_q^*)^k\)

\[
F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i})
\]

Rounding Function

Rounding of each coefficient of a polynomial \(b \):

\[
S_{coef}(b_i) = \lfloor p \cdot \bar{b}_i/q \rfloor, \quad \bar{b}_i \equiv b_i \mod q
\]

\(p \) power of two \(\Rightarrow S_{coef}(b_i): \log_2(p) \) high-order bits of \(b_i \)
Parameters choice

SPRING: $F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i})$

[BPR 12]
- q exponential in k
- s_i short

⇒ **Proof of Security** (Assuming hardness of RLWE) but **not efficient**
Parameters choice

SPRING: \(F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i}) \)

[BPR 12]
- \(q \) exponential in \(k \)
- \(s_i \) short

\(\Rightarrow \) **Proof of Security (Assuming hardness of RLWE) but not efficient**

[BBLPR 14]
- \(q = 257, \ n = 128, \ k = 64, \ p = 2 \)
- **Efficient** design but **no proof** of security
- Concrete security analysis required
- Output has a **noticeable bias** of \(1/q \)
Dealing with the Bias

SPRING: \(F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i}) \)

Parameters: \(q = 257, n = 128, k = 64, p = 2 \)

SPRING-CRT [BBLPR 14]

Secrets drawn in \(R_{2^q}^* \) instead of \(R_q^* \)

- Even modulus: no bias
- Attacks to recover the bias
Dealing with the Bias

SPRING: \(F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i}) \)

Parameters: \(q = 257, \ n = 128, \ k = 64, \ p = 2 \)

SPRING-CRT [BBLPR 14]

- Secrets drawn in \(R_{2^q}^* \) instead of \(R_q^* \)
 - Even modulus: no bias
 - Attacks to recover the bias

SPRING-BCH [BBLPR 14]

- Apply a BCH code with parameters \([128, 64, 22]\) to the biased output
 - Reduce the bias to \(1/q^{22} \approx 2^{-176} \)
 - Halve the output length
Our Work: SPRING with Rejection Sampling

SPRING: \[F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i}) \]

Parameters: \(q = 257, \ n = 128, \ k = 64, \ p \in \{2, 4, 8, 16\} \)

Rounding Function

Rounding of each coefficient:

\[
\begin{align*}
 b_i \rightarrow \begin{cases}
 \bot & \text{if } b_i = 256 \\
 S_{\text{coef}}(b_i) & \text{otherwise}
 \end{cases}
\end{align*}
\]

\(S_{\text{coef}}(b_i) : \log_2(p) \) high order bits of \(b_i \)
Our Work: SPRING with Rejection Sampling

SPRING: \(F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i}) \)

Parameters: \(q = 257, \ n = 128, \ k = 64, \ p \in \{2, 4, 8, 16\} \)

Rounding Function

Rounding of each coefficient:

\[
b_i \rightarrow \begin{cases}
\bot & \text{if } b_i = 256 \\
S_{\text{coef}}(b_i) & \text{otherwise}
\end{cases}
\]

\(S_{\text{coef}}(b_i) \): \(\log_2(p) \) high order bits of \(b_i \)

SPRING-RS

- No bias
- Variable output length
Our Work: SPRING with Rejection Sampling

SPRING: $F(x_1, \ldots, x_k) = S(a \cdot \prod_{i=1}^{k} s_i^{x_i})$

Parameters: $q = 257$, $n = 128$, $k = 64$, $p \in \{2, 4, 8, 16\}$

Rounding Function

Rounding of each coefficient:

$$b_i \rightarrow \begin{cases} \perp & \text{if } b_i = 256 \\ S_{\text{coef}}(b_i) & \text{otherwise} \end{cases}$$

$S_{\text{coef}}(b_i)$: $\log_2(p)$ high order bits of b_i

SPRING-RS

- No bias
- Variable output length

\Rightarrow Let’s use it in counter mode (CTR) as a PRG.
Counter Mode

Using Gray Code Counter

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1 (S(a))</td>
</tr>
<tr>
<td>2</td>
<td>11 (S(a \cdot s_1))</td>
</tr>
<tr>
<td>3</td>
<td>10 (S(a \cdot s_2))</td>
</tr>
<tr>
<td>4</td>
<td>110 (S(a \cdot s_2 \cdot s_3))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

SPRING CTR

- **b Internal state, y output**
- **Initialization:** \(b \leftarrow a, \) \(y \leftarrow \perp \)
- **At Each Step:**
 - Update \(x \)
 - \(i \) flipped bit of \(x \)
 - \(b \leftarrow b \cdot s_i \) if \(x_i = 1 \)
 - \(b \leftarrow b \cdot s_i^{-1} \) if \(x_i = 0 \)
- \(y \leftarrow y || S(b) \)
- **Return y**
Counter Mode

Using Gray Code Counter

<table>
<thead>
<tr>
<th>x</th>
<th>$F(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$S(a)$</td>
</tr>
<tr>
<td>1</td>
<td>$S(a \cdot s_1)$</td>
</tr>
<tr>
<td>2</td>
<td>$S(a \cdot s_1 \cdot s_2)$</td>
</tr>
<tr>
<td>3</td>
<td>$S(a \cdot s_2)$</td>
</tr>
<tr>
<td>4</td>
<td>$S(a \cdot s_2 \cdot s_3)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

SPRING CTR

- **b** Internal state, **y** output
- **Initialization:**
 \[b \leftarrow a, \quad y \leftarrow \bot \]
- **At Each Step:**
 - Update x
 - i flipped bit of x
 - $b \leftarrow b \cdot s_i$ if $x_i = 1$
 - $b \leftarrow b \cdot s_i^{-1}$ if $x_i = 0$
 - $y \leftarrow y || S(b)$
- **Return** y

- **Only one** polynomials product per step
- Require to **store** the s_i^{-1} polynomials as well
Implementation Tricks

- Store the $a, s_i s_i^{-1}$ in FFT evaluated form $a_{ev}, s_{i, ev}, s_i^{-1}_{ev}$
 - Coefficient wise product
 - One FFT per step to get the internal state b

- Use SIMD vector instructions
 - Perform operation in one fell swoop on a vector of data
 - Intel core SSE2 and ARM Neon: 16 vectors of 8 coefficients per polynomials
 - Intel core AVX2: 8 vectors of 16 coefficients per polynomials
SPRING-RS in a Nutshell

Initialization

\[x = 0 \ldots 00 \]

\[\begin{array}{cccccccc}
16 \text{ c} & 16 \text{ c}
\end{array} \]

\[b_{ev} \leftarrow a_{ev} \]

\[
\text{FFT}
\]
SPRING-RS in a Nutshell

Initialization

\[x = 0 \ldots 00 \]

FFT over

\[(\mathbb{Z}_{257})^{128} \]

FFT

\[b_{ev} \leftarrow a_{ev} \]

\[b \]
SPRING-RS in a Nutshell

Initialization
\(x = 0 \ldots 00 \)

FFT over \((\mathbb{Z}_{257})^{128}\)

Rejection test

\[y \leftarrow y_{||} S(b) \]

Rejection test

Initialization

FFT

Rejection test

\(b_{ev} \leftarrow a_{ev} \)

FFT over \((\mathbb{Z}_{257})^{128}\)

\(b \)

BAD
SPRING-RS in a Nutshell

Initialization:
\[x = 0 \ldots 00 \]
\[b_{ev} \leftarrow a_{ev} \]

FFT over \((\mathbb{Z}_{257})^{128}\)

Rejection test:
[BAD]

Rounding:
\[y \leftarrow y || S(b) \]
SPRING-RS in a Nutshell

Update

b_{ev}

$x = 0 \ldots 01$

Point-wise product

FFT

$b_{ev} \cdot s_{1ev}$
SPRING-RS in a Nutshell

Update

\(b_{ev} \)

\(x = 0 \ldots 01 \)

FFT
SPRING-RS in a Nutshell

New Internal state

FFT over $(\mathbb{Z}_{257})^{128}$
Security Analysis of SPRING

- With BPR12 parameters: Security proof
- With efficient parameters
 - No security proof
 - Resistant against known RLWE attacks

SPRING-RS

- more output bits per coefficient returned
 - More information given to the adversaries
 - Does not seem to weaken the scheme though
- Using rejection sampling
 - Possible side channel leaks
 - Seems hard to recover the exact position of rejected coefficients
 - The adversary would need to solve a polynomial system
Performance (counter mode) in cycle per output bytes

<table>
<thead>
<tr>
<th></th>
<th>SPRING-BCH</th>
<th>SPRING-CRT</th>
<th>AES-CTR</th>
<th>SPRING-RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM Cortex A7</td>
<td>445</td>
<td></td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>Core i7 Ivy Bridge</td>
<td>46</td>
<td>23.5</td>
<td>1.3 (NI)</td>
<td>6</td>
</tr>
<tr>
<td>Core i5 Haswell</td>
<td>19.5 (AVX2)</td>
<td></td>
<td>0.68 (NI)</td>
<td>2.8 (AVX2)</td>
</tr>
</tbody>
</table>
Other Points of the Paper

Reducing Key Size
- Using an other PRG
- Using a smaller instantiation of SPRING-RS

SPRING-RS PRF
- Return the rounding of the first non-rejected 96 coefficients of the product
- If less than 96 coefficients are returned pad the output with zeros
To Conclude

- This work proposes a version of SPRING using rejection sampling
- Efficient as a PRG when used in counter mode
- No security proof
- Seems to be resistant to known attacks

Open questions
- Is there a security proof for SPRING with efficient parameters?
- Are there other attacks?
To Conclude

- This work proposes a version of SPRING using rejection sampling
- Efficient as a PRG when used in counter mode
- No security proof
- Seems to be resistant to known attacks

Open questions
- Is there a security proof for SPRING with efficient parameters?
- Are there other attacks?

Thank you for your time!