Fault Attacks on Supersingular Isogeny Cryptosystems

Yan Bo Ti

Department of Mathematics,
University of Auckland

PQCrypto 2017, 26th of June
1 Preliminaries
 Introduction
 Supersingular isogenies
 SSI cryptosystems

2 Fault attack
 Fault injection
 Recovering secret isogeny

3 Application
Definition (Discrete Logarithm Problem)

Pick an abelian group \(G = \langle g \rangle \). Given \(g \) and \(X \), where \(X = g^s \), recover \(s \).

- Each scalar \(s \) determines the map \(g \mapsto g^s \).
- Fixing \(s \) is same as fixing endomorphism \(\phi_s : G \to G \).
Definition (Discrete Logarithm Problem)

Pick an abelian group $G = \langle g \rangle$. *Given* g and X, where $X = g^s$, *recover* s.

- Each scalar s determines the map $g \mapsto g^s$.
- Fixing s is same as fixing endomorphism $\phi_s : G \to G$.

Let’s generalise this!
• Fix a finite field \(k = \mathbb{F}_p \) and a finite extension \(K = \mathbb{F}_q \) where \(q = p^k \).

• Let \(E_1 \) and \(E_2 \) be elliptic curves over \(K \).

Definition

An isogeny between \(E_1 \) and \(E_2 \) is a non-constant morphism defined over \(\mathbb{F}_q \) that sends \(O_1 \) to \(O_2 \). We say that \(E_1 \) and \(E_2 \) are isogenous.
Fun facts:

- Isogenies are group homomorphisms.
- For every finite subgroup $G \subset E_1$, there is a unique E_2 (up to isomorphism) and a separable $\phi : E_1 \to E_2$ such that $\ker \phi = G$. We write $E_2 = E_1/G$.
- The isogeny can be constructed by an algorithm by Vélu.
- For any $\phi : E \to E'$ of degree n, there exists a unique $\hat{\phi} : E' \to E$ such that $\phi \circ \hat{\phi} = [n] = \hat{\phi} \circ \phi$.
- For any $\phi : E \to E'$ of degree nm, we can decompose ϕ into isogenies of degrees m and n.
Supersingular Elliptic Curves

Definition

An elliptic curve E/\mathbb{F}_{p^k} is said to be supersingular if $\#E(\mathbb{F}_{p^k}) \equiv 1 \pmod{p}$.

Fun facts:

- All supersingular elliptic curves can be defined over \mathbb{F}_{p^2}.
- There are approximately $p/12$ supersingular curves up to isomorphism.
Definition (Discrete logarithm problem)

Pick an abelian group $G = \langle g \rangle$. Given g and X, where $X = g^s$, recover s.

- Each scalar s determines the map $g \mapsto g^s$.
- Fixing s is same as fixing endomorphism $\phi_s : G \to G$.

Supersingular isogeny problem
Supersingular isogeny problem

Definition (Discrete logarithm problem)

Pick an abelian group \(G = \langle g \rangle \). Given \(g \) and \(X \), where \(X = g^s \), recover \(s \).

- Each scalar \(s \) determines the map \(g \mapsto g^s \).
- Fixing \(s \) is same as fixing endomorphism \(\phi_s : G \to G \).

Definition (Supersingular isogeny problem)

Given two supersingular elliptic curves \(E_1 \) and \(E_2 \), find an isogeny between them.
Set up:

- Choose $p = 2^n \cdot 3^m \cdot f \pm 1$, such that $2^n \approx 3^m$ and f small.
- Choose supersingular elliptic curve E over \mathbb{F}_{p^2}.
- Alice works over $E[2^n]$ with linearly independent points P_A, Q_A.
- Bob works over $E[3^m]$ with linearly independent points P_B, Q_B.

Recall that $E[N] = \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ if N is co-prime to the characteristic of the field.
Set up:

- Choose $p = 2^n \cdot 3^m \cdot f \pm 1$, such that $2^n \approx 3^m$ and f small.
- Choose supersingular elliptic curve E over \mathbb{F}_{p^2}.
- Alice works over $E[2^n]$ with linearly independent points P_A, Q_A.
- Bob works over $E[3^m]$ with linearly independent points P_B, Q_B.

Recall that

$$E[N] = \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$$

if N is co-prime to the characteristic of the field.
- Picks secret $1 \leq a_1, a_2 \leq 2^n$, not both divisible by 2, which determines $G_A = \langle [a_1]P_A + [a_2]Q_A \rangle$.
- Computes ϕ_A with $\ker \phi_A = G_A$ via Vélu.
- Sends E/G_A, $\phi_A(P_B)$, $\phi_A(Q_B)$.

\[E \xrightarrow{\phi_A} E/G_A \]
\[\downarrow \phi_B \]
\[E/G_B \]
Key exchange

- Receives E / G_B, $\phi_B(P_A)$, $\phi_B(Q_A)$.
- Computes

 \[
 G'_A = \langle [a_1]\phi_B(P_A) + [a_2]\phi_B(Q_A) \rangle \\
 = \langle \phi_B([a_1]P_A + [a_2]Q_A) \rangle \\
 = \phi_B(G_A).
 \]

- Uses $j(E_{AB})$ as secret key.
One can try to find mathematical algorithms to break the cryptosystem. Or, one can use side-channel attacks.

Fault attacks are physical attacks aimed at physical devices and may be induced by:

- EM probe
- Clock/volt glitching
- Temperature disturbances
One can try to find mathematical algorithms to break the cryptosystem. Or, one can use side-channel attacks.

Fault attacks are physical attacks aimed at physical devices and may be induced by:

- EM probe
- Clock/volt glitching
- Temperature disturbances
- and more!
Fault attacks

One can try to find mathematical algorithms to break the cryptosystem. Or, one can use side-channel attacks.

Fault attacks are physical attacks aimed at physical devices and may be induced by:

- EM probe
- Clock/volt glitching
- Temperature disturbances
- and more!

Fault attacks cause computation of unintended values which may leak sensitive data.
Given elliptic curve E, base point P, compute $[\lambda]P$.

- Introduce fault to base point $P \in E$ to become $P' \in E'$.
 - Change in curves occurs because operation does not use a_6.
- This changes the elliptic curve from E to E' and potentially makes solving ECDLP easier.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.
Given elliptic curve E, base point P, compute $[\lambda]P$.

- Introduce fault to base point $P \in E$ to become $P' \in E'$.
 - Change in curves occurs because operation does not use a_6.
- This changes the elliptic curve from E to E' and potentially makes solving ECDLP easier.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.

\[P \text{ becomes } P' \]

\[P \xrightarrow{\text{fetch}} \text{Compute } [\lambda](\cdot) \xrightarrow{\text{output}} [\lambda]P' \]
Given elliptic curve E, base point P, compute $[\lambda]P$.

- Introduce fault to base point $P \in E$ to become $P' \in E'$.
- This changes the elliptic curve from E to E' and potentially makes solving ECDLP easier.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E'$.
- This changes the elliptic curve from E to E' and potentially makes solving ECDLP easier.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- This changes the elliptic curve from E to E' and potentially makes solving ECDLP easier.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- Compute $[3^m][f]\phi(P')$ to get Z which will have order 2^n with high probability.
- Solving the ECDLP on $[\lambda]P'$ on E', we learn information about λ.
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- Compute $[3^m][f] \phi(P')$ to get Z which will have order 2^n with high probability.
- Use Z to compute $\hat{\phi}$.

Fault attacks in Isogenies
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- Compute $[3^m][f]\phi(P')$ to get Z which will have order 2^n with high probability.
- Use Z to compute $\hat{\phi}$.

\[
P \xrightarrow{\text{fetch}} \text{Compute } \phi_A(\cdot) \xrightarrow{\text{output}} \phi_A(P')
\]
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- Compute $[3^m][f]\phi(P')$ to get Z which will have order 2^n with high probability.
- Use Z to compute $\hat{\phi}$.

Fault attacks in Isogenies
Faulted point still on curve

- Introduce a fault to the x-coordinate of P.
- Recover P' by solving for y-coordinate. Then P' will lie in E or its quadratic twist E'.
- Some implementations do not distinguish between the two.
- If not, there is a 50% chance of P' landing in E.
Given a point P and an isogeny ϕ, compute $\phi(P)$.

- Introduce fault to base point $P \in E$ to become $P' \in E$.
- Compute $[3^m][f]\phi(P')$ to get Z which will have order 2^n with high probability.
- Use Z to compute $\hat{\phi}$.

Fault attacks in Isogenies
Lemma

Let E_1 be a supersingular elliptic curve over \mathbb{F}_{p^2}, where $p = 2^n 3^m f \pm 1$. Suppose $\phi : E_1 \to E_2$ is a separable isogeny of degree 2^n. If $\phi(P') \in E_2$ has order 2^n, then the kernel of $\hat{\phi}$ will be generated by $\phi(P')$.

N.B. $\phi(P')$ does not have to have order 2^n. If order is close to 2^n, we can brute force.
Aim: Recover secret ϕ_A.

Key Exchange
Aim: Recover secret ϕ_A.

- Need to evaluate image of random point under ϕ_A.
- Fault injection before computation of $\phi_A(P_B)$ or $\phi_A(Q_B)$.
- Alice outputs $\phi_A(P')$, hence attacker may recover ϕ_A.
• Image of random points on secret isogeny gives away secret.
 • Recover point of order equal to degree of isogeny.
 • Use point as kernel to construct dual isogeny.
• Important to use countermeasures and checks in implementations!
 • Check point order
 • Able to use point compression in signatures
• Image of random points on secret isogeny gives away secret.
 • Recover point of order equal to degree of isogeny.
 • Use point as kernel to construct dual isogeny.
• Important to use countermeasures and checks in implementations!
 • Check point order
 • Able to use point compression in signatures

THANK YOU!
• Image of random points on secret isogeny gives away secret.
 • Recover point of order equal to degree of isogeny.
 • Use point as kernel to construct dual isogeny.
• Important to use countermeasures and checks in implementations!
 • Check point order
 • Able to use point compression in signatures

THANK YOU!
Also, thanks to NZMS!