
Summer School on Post-Quantum Cryptography 2017, TU
Eindhoven

Exercises on Hash-based Signature Schemes

1 Lamport

Consider Lamport’s one-time signature scheme. Let messages be of length n and assume
that Alice has published 2n hash values as her public key and knows 2n secret bit strings,
representing her private key, which lead to those 2n hash results. Alice uses this signature
system multiple times with the same key. Analyze the following two scenarios for your
chances of faking a signature on a message M :

1. You get to see signatures on random messages.

2. You get to specify messages that Alice signs.

You may not ask Alice to sign M in the second scenario.
How many signatures do you need on average in order to construct a signature on M? How
many signatures do you need on average to be able to sign any message? Answer these
questions in both scenarios.

2 Optimized Lamport

Recall the optimized Lamport scheme. A detailed description can be found in Appendix A.
Let message length m = 16 and internal hash length n = 256.

1. What is the length of the checksum in bits?

2. What is the bit size of signatures, secret, and public keys?

3. Let M = 10010100110101012. Which secret and public key elements become part of
the signature?

4. Convince yourself (best by proof) that whenever at least one bit in the encoded
message B flips from 1 to 0, at least one other bit flips from 0 to 1. Convince yourself
that a single bit flip does not necessarily cause just a single bit flip in the other
direction.

3 WOTS

Recall the Winternitz one-time signature scheme (WOTS). A detailed description can be
found in Appendix B. Let Winternitz parameter w = 16 and message length m = 16.
Assume we are internally using a hash function with n = 256.
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1. What is the length of the checksum in base w representation?

2. What is the bit size of signatures, secret, and public keys?

3. How many calls to F are required for key generation, signing and verification?

4. How would speed and sizes change if we changed w to 8?

5. Let M = 10010100110101012. Draw the imaginary graph of a WOTS key pair
with the above parameters (w = 16) and circle the nodes which become part of the
signature.

6. Convince yourself (best by proof) that whenever at least one value in the encoded
message B is increased, at least one other value in B is decreased. Convince yourself
that an increase in one value might cause a decrease in several other values.

4 HORS

The HORS (Hash to Obtain Random Subset) signature scheme is an example of a few-time
signature scheme. It has integer parameters k, t, and n, uses a hash function H : {0, 1}∗ →
{0, 1}k·log2 t and a length preserving one-way function F : {0, 1}n → {0, 1}n. For simplicity
assume that H is surjective.
To generate the key pair a user picks t strings ski ∈ {0, 1}n and computes pki = F(ski)
for 0 ≤ i < t. The public key is pk = (pk0, pk1, . . . , pkt−1); the secret key is sk =
(sk0, sk1, . . . , skt−1).
To sign a message M ∈ {0, 1}∗ compute H(M) = (h0, h1, . . . , hk−1), where each hi ∈
{0, 1, 2, . . . , t− 1}. The signature on M is σ = (skh0 , skh1 , skh2 , . . . , skhk−1

).
To verify the signature, compute H(M) = (h0, h1, . . . , hk−1) and
(F(skh0),F(skh1),F(skh2), . . . ,F(skhk−1

)) and verify that F(skhi
) = pkhi

for 0 ≤ i < t.

1. Let n = 256, t = 25, and k = 3. How large (in bits) are the public and secret keys?
How large is a signature? How many different signatures can the signer generate for
a fixed key pair as H(M) varies? Ignore that sk-values could collide.

2. The same public key can be used for r+1 signatures if H is r-subset-resilient, meaning
that given r signatures and thus r vectors σj = (shj,0

, shj,1
, shj,2

, . . . , shj,k−1
), 1 ≤ j ≤ r

the probability that H(M ′) consists entirely of components in {hj,i|0 ≤ i < k, 1 ≤
j ≤ r} is negligible.

Even for r = 1, i.e. after seeing just one typical signature, an attacker has an
advantage at creating a fake signature. What are the options beyond exact collisions
in H?

3. Let n = 256, t = 25, and k = 3. Let M be a message so that H(M) = (h0, h1, h2)
satisfies that hi 6= hj for i 6= j. You get to specify messages that Alice signs. You
may not ask Alice to sign M .
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(a) State the smallest number of HORS signatures you need to request from Alice
in order to construct a signature on M .

(b) How many calls to H does this require on average? You should assume that H
and F do not have additional weaknesses beyond having too small parameters.

(c) Explain how you could use under 1000 evaluations of H if you are allowed to
ask for two signatures.

5 The BDS Algorithm

The BDS algorithm is an algorithm that offers a time-memory trade-off for tree traversal
which refers to authentication path generation for Merkle-tree signatures. It’s basic build-
ing block is the TreeHash algorithm. Both were discussed during the lecture. You can find a
description of Treehash in Appendix C. A description of BDS can be found in http://www.

cdc.informatik.tu-darmstadt.de/~dahmen/papers/hashbasedcrypto.pdf on page 28.

1. Simulate the TreeHash algorithm for a tree of height 4 on paper. Consider the case
where the whole tree is computed. Write down the state of the stack in each iteration
of the loop.

2. Simulate the BDS algorithm for a tree of height 6 with parameter k = 2. Write
down the state of all internal storage variables (Auth, Keep, Retain, Treehash.h - all
internal variables).

6 Eliminate a State

Goldreich proposed a stateless version of a previous proposal by Merkle. In this scheme,
one does not use a Merkle tree but a binary tree of one-time key pairs. Each one-time
secret key on an inner node is used to sign the one-time public keys of its child nodes, The
one-time key pairs on the leaf nodes are used to sign messages, the root node is the public
key of the scheme. To sign hash values of length m, the scheme needs a tree of height
h = m. To sign a message digest M , the M -th leaf node is used (taking M as integer).
The signature contains all the one-time signatures on the path from the M -th leaf to the
root. Assume the used one-time signature scheme is WOTS.

1. Compute signature and key size of the scheme for m = 256, w = 16.

2. What is the speed of key generation, signing and verification?

3. What is the trade-off you can achieve using a hyper-tree approach?
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A Optimized Lamport Description

The optimized Lamport scheme uses a one-way function F : {0, 1}n → {0, 1}n, and signs
m bit messages. The secret key consists of ` = m+ logm+ 1 random bit strings

sk = (sk1, . . . , sk`)

of length n. The public key consists of the ` outputs of the one-way function

pk = (pk1, . . . , pk`) = (F(sk1), . . . ,F(sk`))

when evaluated on the elements of the secret key. Signing a message M ∈ {0, 1}m corre-
sponds to first computing and appending a checksum to M to obtain the message mapping
G(M) = B = M‖C where C =

∑m
i=1 ¬Mi. The signature consists of the secret key element

if the corresponding bit in B is 1, and the public key element otherwise:

σ = (σ1, . . . , σ`) with σi =

{
ski , if Bi = 1,
pki , if Bi = 0.

To verify a signature the verifier checks whether the full public key is obtained by hashing
the elements of the signature that correspond to 1 bits in B:

Return 1, iff (∀i ∈ [1, `]) : pki =

{
F(σi) , if Bi = 1,
σi , if Bi = 0.

B WOTS Description

WOTS uses a length-preserving (cryptographic hash) function F : {0, 1}n → {0, 1}n. It
is parameterized by the message length m and the Winternitz parameter w ∈ N, w > 1,
which determines the time-memory trade-off. The two parameters are used to compute

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

The scheme uses w − 1 iterations of F on a random input. We define them as

Fa(x) = F(Fa−1(x))

and F0(x) = x.
Now we describe the three algorithms of the scheme:

Key generation algorithm (kg(1n)): On input of security parameter 1n the key genera-
tion algorithm choses ` n-bit strings uniformly at random. The secret key sk = (sk1, . . . , sk`)
consists of these ` random bit strings. The public verification key pk is computed as

pk = (pk1, . . . , pk`) = (Fw−1(sk1), . . . ,F
w−1(sk`))
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Signature algorithm (sign(1n,M, sk)): On input of security parameter 1n, a message
M of length m and the secret signing key sk, the signature algorithm first computes a base
w representation of M : M = (M1 . . .M`1), Mi ∈ {0, . . . , w − 1}. Next it computes the
check sum

C =

`1∑
i=1

(w − 1−Mi)

and computes its base w representation C = (C1, . . . , C`2). The length of the base-w
representation of C is at most `2 since C ≤ `1(w− 1). We set B = (B1, . . . , B`) = M ‖ C.
The signature is computed as

σ = (σ1, . . . , σ`) = (FB1(sk1), . . . ,F
B`(sk`)).

Verification algorithm (vf(1n,M, σ, pk)): On input of security parameter 1n, a message
(digest) M of length m, a signature σ and the public verification key pk, the verification
algorithm first computes the Bi, 1 ≤ i ≤ ` as described above. Then it does the following
comparison:

pk = (pk1, . . . , pk`)
?
= (Fw−1−B1(σ1), . . . ,F

w−1−B`(σ`))

If the comparison holds, it returns true and false otherwise.
Remark. The difference between the basic WOTS as described above and the advanced
variants proposed in recent work is how F is iterated. For these exercises this is of no
relevance. Hence, we stick to the easiest variant.

C TreeHash Description

TreeHash is a space efficient method to generate authentication paths if the are needed in
order. In the following description, LeafCalc is a method that generates a leaf, e.g., in
the case of MSS it will generate the respective one-time public key and hash it.

Input: Stack, leaf index φ
Output: Updated Stack

N= LeafCalc (φ);
while top node on Stack has same height as N do

N ←− H ((Stack.pop()||N));
end
Stack.push(N);
return Stack

Algorithm 1: TreeHash
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