

A "Spins-inside" Quantum Processor

8th Intl. Conf. on Post-Quantum Cryptography 26-28 June 2017, Utrecht, Netherlands Lieven Vandersypen

Can a quantum computer be built?

Post Quantum Cryptography workshop

Leuven, 23-26 May 2006

Lieven Vandersypen

Delft University of Technology Faculty Of Applied Sciences

000 & 001 & 010 & 011 & 100 & 101 & 110 & 111

0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1110 & 1111

50 qubits (2⁵⁰ *complex* amplitudes) exceed memory of largest supercomputer

What quantum computers can do

Nobel 2012 citation: "The quantum computer may **change our everyday lives** in this century in the same radical way as the classical computer did in the last century."

Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance

Lieven M. K. Vandersypen*†, Matthias Steffen*†, Gregory Breyta*, Costantino S. Yannoni*, Mark H. Sherwood* & Isaac L. Chuang*†

* IBM Almaden Research Center, San Jose, California 95120, USA † Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075, USA

NATURE | VOL 414 | 20/27 DECEMBER 2001

15 = 3 x 5 ...

Trapped ions

Advance 1: Qubits can be built on a chip! (Delft examples)

Semiconductor quantum dots

Semiconductor-superconductor hybrids

Impurities in diamond or silicon

Superconducting circuits

All-electrical semiconductor quantum dots

Artificial atoms and molecules

Discrete # charges, quantized orbitals

Electrical control and detection

- Tunable # of electrons
- Tunable tunnel barriers
- Electrical contacts

Two-qubit operation

Electrical control of the coupling between neighbouring spins

Evolution of spin 2 conditional on spin 1

Read-out Spin-selective tunneling + charge detection

Deutsch-Jozsa algorithm in silicon

T. Watson et al, unpublished

Grover's algorithm in silicon

T. Watson et al, unpublished

Ongoing – 1D and beyond

U. Mukhopadhyay, J.P. Dehollain

We can now program and read out electron spin qubits in silicon all-electrically

Advance 2: Extending quantum coherence

Quantum state lifetimes boosted by four orders of magnitude

Coherence for superconducting qubits

Oliver and Welander, MRS Bulletin 2013

Advance 3: Quantum error correction

Use redundancy to remove errors faster than they occur

$$\oint + \oint = \oint \oint \oint + \oint \oint \oint$$

Requires: error probability per step below 1% (previously below 0.01%) large redundancy (100x to 10,000x)

Can preserve quantum states for as long as is needed!

Raussendorf and Briegel, Phys. Rev. Lett. 2007

Quantum error correction demonstrated using superconducting qubits

What stops us from having a quantum computer today?

Challenge 1: Qubits have personalities

Qubit is much more sensitive to CD variations, scattering, defects, charge noise and even nuclear spins

Way forward 1: Use industry cleanrooms

Tailor-made devices and circuits. Leverage known processes

QuTech-Intel collaboration

10 years, 50 M\$

Silicon spin qubits Transmon qubits

Architecture, Cryo-CMOS, interconnects

Coming this year: quantum dot arrays made @ Intel 300 mm clo

Transistor: 1 gate / 1 device

QDots: 2N+3 gates / N devices

Challenge 2: Scalable control circuits

Today: bulky, expensive equipment

Way forward 2 : Tailored (cryo-)electronics

Integrated electronics 1% accuracy in all parameters

60 K 4 K 2 W 100 mK 0.5 mW

E. Charbon et al., "Cryo-CMOS for Quantum Computing", IEDM 2016. See ISSCC 2017, Paper 15.5 (Tuesday)

Challenge 3: Wiring up qubits

Processor

- 10⁹ transistors
- 10³ pins

Memory

- 10¹² bytes
- 10² pins

Quantum dots

- 3 qubits
- 16 pins

Require signals to/from every single qubit

Way forward 3: Quantum version of Rent's rule

Challenge 4: Architecture

Does not map to any established architecture

Way forward 4: Quantum architecture

Systems approach needed

Challenges in each layer

Layers are highly interrelated

QuTech partnership @ Delft

Quantum technology will not be built by physicists alone

5 engineering faculty, 5 physics faculty 20 senior scientists 20 technicians 10 administrative staff building renovation, nanofab facilities, equipment

PhD students and postdocs to be funded through external sources

Projecting quantum progress

Can we accelerate hardware development?

Can we accelerate software development?

IBM Quantum Experience

Accessible to anyone through the cloud

The quantum computer – Coming to stores near you (soon?)

http://qutech.nl/vandersypenlab

